Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức - Nguyễn Chín Em

Tài liệu gồm 308 trang được biên soạn bởi thầy Nguyễn Chín Em tổng hợp lý thuyết, dạng toán và bài tập trắc nghiệm – tự luận các chủ đề liên quan đến chuyên đề số phức trong chương trình Giải tích 12 chương 4; các bài tập trong tài liệu được phân loại và sắp xếp theo độ khó tăng dần với 4 mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao; có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề số phức – Nguyễn Chín Em: CHỦ ĐỀ 1 . DẠNG ĐẠI SỐ CỦA SỐ PHỨC VÀ CÁC PHÉP TOÁN. A TÓM TẮT LÝ THUYẾT 1 Định nghĩa. 2 Hai số phức bằng nhau. 3 Biểu diễn hình học của số phức. 4 Mô-đun của số phức. 5 Số phức liên hợp. 6. Cộng, trừ, nhân, chia số phức. B DẠNG TOÁN VÀ BÀI TẬP Dạng 1. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. Dạng 2. Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 3. Tính giá trị của biểu thức. Dạng 4. Bài toán sử dụng bất đẳng thức trong số phức. C CÂU HỎI TRẮC NGHIỆM [ads] CHỦ ĐỀ 2 . BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC VÀ BÀI TOÁN LIÊN QUAN. A KIẾN THỨC CƠ BẢN B BÀI TẬP VẬN DỤNG Dạng 1. Tập hợp điểm của số phức là đường thẳng và các bài toán liên quan. Dạng 2. Tập hợp điểm của số phức là đường tròn, hình tròn, hình vành khăn. Dạng 3. Tập hợp điểm của số phức là elíp. Dạng 4. Bài toán liên quan đến giá trị lớn nhất, giá trị nhỏ nhất. Dạng 5. Sử dụng bình phương vô hướng. Dạng 6. Sử dụng hình chiếu và tương giao. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 3 . PHƯƠNG TRÌNH BẬC HAI TRÊN TẬP SỐ PHỨC. A KIẾN THỨC CƠ BẢN 1 Căn bậc hai của số phức. 2 Phương trình bậc hai trên tập số phức. B CÁC DẠNG TOÁN Dạng 1. Phương trình bậc hai với hệ số phức. Dạng 2. Tìm các thuộc tính của số phức thỏa mãn điều kiện K. Dạng 3. Biểu diễn hình học của số phức và bài toán liên quan. Dạng 4. Phương trình bậc hai và bậc cao trong số phức. Dạng 5. Phương trình quy về bậc hai. Dạng 6. Dạng lượng giác của số phức. C CÂU HỎI TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Bài giảng giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức
Tài liệu gồm 20 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững các định nghĩa về số phức và các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. + Nắm vững các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Nắm vững các bất đẳng thức cơ bản liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz. Kĩ năng : + Biết thực hiện thành thạo các định nghĩa, các phép toán trên số phức và vận dụng vào giải được một số bài toán liên quan. + Biết thực hiện thành thạo việc chuyển đổi ngôn ngữ số phức sang ngôn ngữ hình học. + Giải thành thạo các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Vận dụng linh hoạt các bất đẳng thức liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz vào giải các bài toán max, min môđun số phức. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. Dạng 2 : Phương pháp đại số.
Bài giảng phương trình bậc hai với hệ số thực
Tài liệu gồm 15 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình bậc hai với hệ số thực, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững cách giải phương trình bậc hai với hệ số thực trên tập số phức. Kĩ năng : + Giải được phương trình bậc hai với hệ số thực trên tập số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng định lý Vi-ét vào giải một số bài toán chứa nhiều biểu thức đối xứng đối với hai nghiệm của phương trình. + Biết cách giải các phương trình quy về phương trình bậc hai đối với hệ số thực. + Vận dụng các kiến thức đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2 : Định lí Vi-ét và ứng dụng. Dạng 3 : Phương trình quy về phương trình bậc hai.
Bài giảng các phép toán trên tập hợp số phức
Tài liệu gồm 22 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề các phép toán trên tập hợp số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nhận biết được các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. Kĩ năng : + Thành thạo các phép toán cộng, trừ hai số phức và vận dụng vào giải được một số bài toán liên quan. + Thành thạo phép nhân hai số phức và vận dụng vào giải được một số bài toán liên quan. + Thành thạo phép toán chia hai số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng các phép toán đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện các phép toán của số phức. Dạng 2 : Xác định các yếu tố của số phức qua các phép toán. – Bài toán 1. Tìm phần thực, phần ảo của số phức. – Bài toán 2. Tìm số phức liên hợp, tính môđun số phức. – Bài toán 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 3 : Tìm số phức thỏa mãn điều kiện cho trước. Dạng 4 : Bài toán tập hợp điểm biểu diễn số phức.
Bài giảng khái niệm số phức
Tài liệu gồm 12 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề khái niệm số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững khái niệm số phức, số phức liên hợp, hai số phức bằng nhau. + Trình bày được công thức tính môđun số phức. + Mô tả được biểu diễn hình học của một số phức. Kĩ năng : + Biết tìm phần thực, phần ảo của một số phức. + Biết tìm số phức liên hợp của số phức z = a + bi. + Tính được môđun của một số phức. + Biết biểu diễn hình học của một số phức. + Cho điểm M(a;b) là điểm biểu diễn của số phức z = a + bi, biết tìm phần thực, phần ảo; biết tính môđun của z. + Biết tìm điều kiện để hai số phức bằng nhau. + Biết cách tìm tập hợp điểm biểu diễn cho số phức z thỏa mãn tính chất nào đó. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định các yếu tố liên quan đến khái niệm số phức. – Bài toán 1. Tìm phần thực, phần ảo của số phức. – Bài toán 2. Tìm số phức liên hợp, môđun của số phức, điều kiện để hai số phức bằng nhau. Dạng 2 : Tìm điểm biểu diễn hình học của số phức.