Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 12 môn Toán lần 2 năm 2020 2021 trường THPT Lý Thánh Tông Hà Nội

Nội dung Đề KSCL lớp 12 môn Toán lần 2 năm 2020 2021 trường THPT Lý Thánh Tông Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2020 – 2021 trường THPT Lý Thánh Tông – Hà Nội; đề thi được biên soạn theo hình thức đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 311, 312, 313, 314, 315, 316, 317, 318. Trích dẫn đề KSCL Toán lớp 12 lần 2 năm 2020 – 2021 trường THPT Lý Thánh Tông – Hà Nội : + Bà Hoa gửi vào ngân hàng triệu đồng theo hình thức lãi suất kép. Lãi suất ngân hàng là năm và không thay đổi qua các năm bà gửi tiền. Sau ít nhất bao nhiêu năm thì bà Hoa có số tiền cả gốc lẫn lãi lớn hơn triệu đồng? A. năm. B. năm. C. năm. D. năm. + Một khối đồ chơi bằng gỗ có các hình chiếu đứng, hình chiếu cạnh và hình chiếu bằng như hình bên (các kích thước cho như trong hình). Tính thể tích của khối đồ chơi đó (làm tròn kết quả đến chữ số hàng đơn vị). + Người ta cần đổ một ống cống thoát nước hình trụ với chiều cao 2m, độ dày thành ống là 10cm. Đường kính ống là 50cm. Tính lượng bê tông cần dùng để làm ra ống thoát nước đó? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?
Đề khảo sát chất lượng lớp 12 môn Toán (đợt 2) năm 2021 2022 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán (đợt 2) năm 2021 2022 sở GD ĐT Thanh Hóa Bản PDF Nhằm giúp các em học sinh lớp 12 rèn luyện để hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2022, sáng thứ Ba ngày 26 tháng 04 năm 2022, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 môn Toán năm học 2021 – 2022 lần thứ hai. Đề khảo sát chất lượng Toán lớp 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề khảo sát chất lượng Toán lớp 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Trên tập hợp các số phức, xét phương trình z2 – 2z – m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2/2 với C(-1;1). Tổng các phần tử trong T bằng? + Cho hình trụ có O và O’ là tâm của hai đáy. Xét hình chữ nhật ABCD có A và B cùng thuộc đường tròn (O) và C và D cùng thuộc đường tròn (O’) sao cho AB = 3/3, BC = 6; đồng thời mặt phẳng (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Trong không gian Oxyz, cho mặt phẳng (P): x + y – 2z + 10 = 0 và hai điểm A(1;-1;2), B(2;0;-4). Gọi M(a;b;c) là điểm thuộc đoạn thẳng AB sao cho luôn tồn tại hai mặt cầu có bán kính R = 6 tiếp xúc với mặt phẳng (P), đồng thời tiếp xúc với đoạn thẳng AB tại M. Gọi T = [m;n) là tập giá trị của biểu thức 25a2 + b2 + 2c2. Tổng m + n bằng?