Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán chứa căn - Nguyễn Tiến

Tài liệu gồm 89 trang được biên soạn bởi thầy giáo Nguyễn Tiến tổng hợp kiến thức chuyên đề căn thức, giúp học sinh lớp 9 nắm được phương pháp giải các bài toán chứa căn, tài liệu không có các bài tập dạng nâng cao, phức tạp, phù hợp với các đối tượng học sinh học lớp 9 và học ôn thi vào 10 các trường công lập trên cả nước với các dạng đề về căn bậc hai không khó. PHÂN DẠNG TOÁN CHỨA CĂN. A. TÌM HIỂU VỀ CĂN BẬC HAI. B. TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC XÁC ĐỊNH (CÓ NGHĨA, TỒN TẠI). C. CÁC BÀI TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. DẠNG 1 : RÚT GỌN BIỂU THỨC CHỨA SỐ. + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. + Loại 4: Chứng minh đẳng thức số. + Loại 5: Chứng minh bất đẳng thức. + Loại 6: Căn bậc ba. DẠNG 2 : CÁC DẠNG TOÁN CĂN CHỨA CHỮ (CHỨA ẨN). DẠNG TOÁN GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. + Loại 1: Phương trình trong căn có thể viết dưới dạng bình phương của một biểu thức. + Loại 2: Phương trình dạng √f(x) = √g(x). + Loại 3: Phương trình chứa biểu thức dưới dấu căn không viết được dưới dạng bình phương (trong phương trình chỉ chứa một căn thức). + Loại 4: Phương trình chứa nhiều căn thức, các căn thức có thể đưa về dạng giống nhau. [ads] + Loại 5: Phương trình chứa các căn khác nhau, biểu thức trong căn không viết được dưới dạng bình phương. + Loại 6: Quy về phương trình bậc hai bằng phương pháp đặt ẩn phụ. + Loại 7: Phương trình chứa căn mà biểu thức trong căn ở dạng thương hoặc dạng tích. + Loại 8: Giải các phương trình căn bậc ba. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ. + Bài toán 1: Tìm ẩn để biểu thức thỏa mãn một điều kiện cho trước (lớn hơn, nhỏ hơn, bằng một giá trị cho trước). + Bài toán 2. Tính giá trị của biểu thức tại giá trị cho trước. + Bài toán 3: Tìm a nguyên để biểu thức nguyên. + Bài toán 4: Tìm giá trị lớn nhất, nhỏ nhất. PHẦN BÀI TẬP. BÀI TOÁN TỔNG HỢP – TỰ GIẢI. PHẦN ĐÁP ÁN – HƯỚNG DẪN GIẢI. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA SỐ.  + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các Hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề đồ thị của hàm số y = ax + b (a khác 0)
Nội dung Tài liệu lớp 9 môn Toán chủ đề đồ thị của hàm số y = ax + b (a khác 0) Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề đồ thị của hàm số y = ax + b (a khác 0)A. Tóm tắt lý thuyếtB. Bài tập và các dạng toánDạng 1: Vẽ đồ thị hàm số bậc nhấtDạng 2: Tìm tọa độ giao điểm của hai đường thẳngDạng 3: Xét tính đồng quy của ba đường thẳngDạng 4: Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua ODạng 5: Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số mDạng 6: Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất Tài liệu lớp 9 môn Toán chủ đề đồ thị của hàm số y = ax + b (a khác 0) Tài liệu này bao gồm 23 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán lớp 9. Đồng thời, tài liệu cũng có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết Đồ thị của hàm số bậc nhất. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). B. Bài tập và các dạng toán Dạng 1: Vẽ đồ thị hàm số bậc nhất ... Dạng 2: Tìm tọa độ giao điểm của hai đường thẳng ... Dạng 3: Xét tính đồng quy của ba đường thẳng ... Dạng 4: Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O ... Dạng 5: Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m ... Dạng 6: Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất ... Bài tập trắc nghiệm và bài tập về nhà cũng được cung cấp để học sinh ôn tập và vận dụng kiến thức một cách linh hoạt.
Tài liệu lớp 9 môn Toán chủ đề hàm số bậc nhất
Nội dung Tài liệu lớp 9 môn Toán chủ đề hàm số bậc nhất Bản PDF - Nội dung bài viết A. Tóm tắt lý thuyếtB. Bài tập và các dạng toán Tài liệu lớp 9 môn Toán chủ đề hàm số bậc nhất bao gồm 17 trang kiến thức cần nhớ, các dạng toán và bài tập liên quan đến hàm số bậc nhất trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết 1. Khái niệm: Hàm số bậc nhất là hàm số có dạng y = ax + b, với a và b là hai số đã cho và a ≠ 0. Nếu b = 0, thì hàm số có dạng y = ax. 2. Các tính chất của hàm số bậc nhất: Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R. Hàm số bậc nhất đồng biến trên R khi a > 0 và nghịch biến trên R khi a < 0. B. Bài tập và các dạng toán Dạng 1: Nhận dạng hàm số bậc nhất. Cách giải: Hàm số bậc nhất có dạng y = ax + b (a ≠ 0). Dạng 2: Xét tính đồng biến và nghịch biến của hàm số bậc nhất. Cách giải: Xét hàm số bậc nhất y = ax + b (a ≠ 0). Đồng biến trên R khi a > 0. Nghịch biến trên R khi a < 0. Dạng 3: Giá trị của hàm số. Cách giải: Để tính giá trị của hàm số y = f(x) tại x = a, thay x = a vào f(x) và viết là f(a). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ. File WORD (dành cho quý thầy, cô):
Tài liệu lớp 9 môn Toán chủ đề hệ số góc của đường thẳng y = ax + b (a khác 0)
Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ số góc của đường thẳng y = ax + b (a khác 0) Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 - Hệ số góc của đường thẳng y = ax + b Tài liệu học Toán lớp 9 - Hệ số góc của đường thẳng y = ax + b Tài liệu học Toán lớp 9 với chủ đề hệ số góc của đường thẳng y = ax + b là tài liệu cần thiết cho học sinh để nắm vững kiến thức cơ bản và rèn luyện kỹ năng giải các dạng toán liên quan đến hệ số góc của đường thẳng. Tài liệu này bao gồm 15 trang, đầy đủ các kiến thức cần nhớ, các dạng toán và bài tập, đồng thời kèm theo đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết: Tài liệu cung cấp các kiến thức cơ bản về hệ số góc của đường thẳng y = ax + b, bao gồm cách xác định hệ số góc của đường thẳng dựa trên vị trí tương đối giữa hai đường thẳng và góc tạo bởi đường thẳng và trục hoành. B. Bài tập và các dạng toán: Tài liệu cung cấp các dạng toán phổ biến liên quan đến hệ số góc của đường thẳng y = ax + b. Các dạng toán bao gồm: Tìm hệ số góc của đường thẳng: Hướng dẫn cách giải nhanh chóng bằng việc sử dụng kiến thức về hệ số góc và vị trí tương đối giữa các đường thẳng. Xác định góc tạo bởi đường thẳng và trục hoành: Hướng dẫn cách tính góc giữa đường thẳng và trục hoành thông qua phương pháp vẽ đồ thị và sử dụng tỉ số lượng giác. Lập phương trình đường thẳng biết hệ số góc: Hướng dẫn cách tìm phương trình đường thẳng khi đã biết hệ số góc và điểm đi qua. Bên cạnh đó, tài liệu cũng đi kèm bài tập trắc nghiệm và bài tập về nhà để học sinh tự rèn luyện và kiểm tra kiến thức sau khi đã học qua nội dung lý thuyết. File WORD được cung cấp giúp quý thầy, cô dễ dàng sử dụng và chỉnh sửa theo nhu cầu. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức về hệ số góc của đường thẳng và có thêm cơ hội để luyện tập và ứng dụng trong thực tế, từ đó nâng cao kỹ năng giải toán và hiểu sâu hơn về chủ đề này.
Tài liệu lớp 9 môn Toán chủ đề nhắc lại và bổ sung các khái niệm về hàm số
Nội dung Tài liệu lớp 9 môn Toán chủ đề nhắc lại và bổ sung các khái niệm về hàm số Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán - Hàm sốA. Tóm tắt lý thuyếtB. Bài tập và các dạng toán Tài liệu lớp 9 môn Toán - Hàm số Tài liệu này bao gồm 24 trang, cung cấp kiến thức cơ bản, các dạng toán và bài tập liên quan đến chủ đề nhắc lại và bổ sung về khái niệm hàm số trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết cho từng bài tập. A. Tóm tắt lý thuyết 1. Khái niệm hàm số: - Hàm số là một quy luật quan hệ giữa hai đại lượng, trong đó giá trị của một biến số phụ thuộc vào giá trị của một biến số khác. - Hàm số có thể được biểu diễn bằng bảng số hoặc công thức. - Khi y là hàm số của x, ta viết y = f(x) hoặc y = g(x). - Hàm hằng là hàm số mà giá trị của y không thay đổi khi x thay đổi. 2. Giá trị của hàm số, điều kiện xác định: - Giá trị của hàm số f(x) tại x=0 là y=f(0). - Điều kiện xác định của hàm số f(x) là tất cả các giá trị của x mà làm cho f(x) có ý nghĩa. 3. Đồ thị của hàm số: - Đồ thị của hàm số y=f(x) là tập hợp các điểm M(x,y) trong mặt phẳng Oxy thỏa mãn y=f(x). - Điểm M(x,y) thuộc đồ thị y=f(x) ⇔ y=f(x). 4. Hàm số đồng biến, hàm số nghịch biến: - Một hàm số y=f(x) được gọi là đồng biến trên R nếu khi x tăng thì y cũng tăng. - Một hàm số y=f(x) được gọi là nghịch biến trên R nếu khi x tăng thì y giảm. B. Bài tập và các dạng toán Các dạng bài tập trong tài liệu bao gồm: Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Tìm điều kiện xác định của hàm số. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Biểu diễn tọa độ của một điểm trên mặt phẳng Oxy. Tài liệu còn bao gồm các bài tập trắc nghiệm và bài tập về nhà để học sinh tự ôn tập thêm.