Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 trường THCS Giảng Võ Hà Nội năm 2022 - 2023 Đề khảo sát Toán lớp 9 trường THCS Giảng Võ Hà Nội năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2022 - 2023 của trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Kỳ thi sẽ được tổ chức vào ngày 16 tháng 02 năm 2023, với đề thi bao gồm đáp án và lời giải chi tiết (được thực hiện bởi CLB Toán Thực Chiến). Trích dẫn một số câu hỏi trong đề khảo sát: Câu 1: Giải bài toán sau bằng cách lập hệ phương trình: Hai người thợ, nếu cùng làm chung một công việc thì sau 15 giờ sẽ xong. Nếu người thứ nhất làm một mình trong 3 giờ rồi nghỉ, sau đó người thứ hai làm tiếp trong 5 giờ thì cả hai người làm được 1/4 công việc. Hỏi nếu làm một mình thì mỗi người cần bao lâu sẽ xong công việc đó? Câu 2: Cho phương trình: x2 + 5x + k - 2 = 0 (k là tham số). a) Giải phương trình khi k = -4. b) Tìm điều kiện của tham số k để phương trình có hai nghiệm phân biệt. Câu 3: Cho đường tròn (O) có dây AB không là đường kính, gọi D là điểm thuộc tia đối của tia AB. Kẻ đường kính PQ của đường tròn (O) vuông góc với dây AB tại C (P thuộc cung lớn AB). Tia DP cắt đường tròn (O) tại điểm M (M khác P), các đường thẳng AB và QM cắt nhau tại K. a) Chứng minh bốn điểm P, C, K, M cùng thuộc một đường tròn. b) Kẻ tiếp tuyến DE của đường tròn (O) (E là tiếp điểm và E thuộc nửa mặt phẳng bờ AB chứa điểm P). Chứng minh DM.DP = DE2. c) Cho ba điểm A, B, D cố định, gọi F là giao điểm của PK và QD. Chứng minh khi đường tròn (O) thay đổi nhưng vẫn đi qua hai điểm A và B thì DK.DC = DE2 và KP.KF không đổi. Hãy cùng rèn luyện và chuẩn bị kỹ lưỡng để cùng đối mặt với các câu hỏi thú vị này trong kỳ thi sắp tới. Chúc các em học tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán 9 đợt 3 năm 2020 - 2021 phòng GDĐT Kim Thành - Hải Dương
Đề KSCL (khảo sát chất lượng) Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề KSCL Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương : + Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 2 ngày, tổ thứ hai may trong 3 ngày thì cả hai tổ may được 470 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo? + Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn. + Cho các số x, y, z, t không âm thoả mãn: x.y + yz + zt + tx = 1. Tìm giá trị nhỏ nhất của biểu thức: 5×2 + 4y2 + 5z2 + t2.
Đề KSCL Toán 9 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 29 tháng 04 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn một ngôi nhà, mất 4 ngày thì xong việc. Hai người cùng làm trong 1 ngày thì người thứ nhất có việc bận nên một mình người thứ hai làm trong 6 ngày nữa thì mới xong công việc. Hỏi mỗi người làm việc một mình thì sau bao lâu xong công việc? + Cho một hình trụ có bán kính đáy là 3cm. Biết diện tích xung quanh của hình trụ là 907 cm2. Tính thể tích của hình trụ. + Cho đường tròn (O) đường kính AB. Qua trung điểm C của OA vẽ dây DE vuông góc với OA. Gọi K là điểm tùy ý trên cung nhỏ BD (K khác B D). H là giao điểm của AK và DE. a) Chứng minh tứ giác BCHK là tứ giác nội tiếp. b) Chứng minh AH.AK = AD2. c) Lấy điểm F trên đoạn KE sao cho KF = KB. Chứng minh tam giác KFB là tam giác đều. Xác định vị trí của điểm K trên cung nhỏ BD để tổng KD + KB + KE đạt giá trị lớn nhất.
Đề KSCL Toán 9 năm 2020 - 2021 trường THCS Lê Ngọc Hân - Hà Nội
Thứ Bảy ngày 24 tháng 04 năm 2021, trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021. Đề KSCL Toán 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đám đất hình chữ nhật có chu vi là 104 mét. Nếu giữ nguyên chiều dài và tăng chiều rộng để mảnh đất trở thành hình vuông thì diện tích mảnh đất tăng lên 240 mét vuông. Tính diện tích mảnh vườn ban đầu. + Bài toán thực tế: Một cốc thủy tinh chứa nước có dạng hình trụ tròn có đường kính đáy là 8 cm. Người ta bỏ thêm vào cốc nước 10 viên đất nặn (đặc) hình lập phương (như hình bên) có cạnh là 2cm. Hỏi sau khi thêm đất nặn vào thì mực nước dâng lên thêm bao nhiêu cm so với ban đầu (biết bề dày thành cốc không đáng kể, đất nặn chìm hoàn toàn trong nước, lấy pi = 3,14 và làm tròn kết quả đến số thập phân thứ hai). + Trên mặt phẳng tọa độ xOy, cho Parabol (P): y = x^2 và đường thẳng (d): y = 2x – m + 1. a. Tìm m để (P) cắt (d) tại một điểm có hoành độ bằng -2. Tìm tọa độ giao điểm còn lại. b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn.
Đề KSCL Toán 9 lần 1 năm 2020 - 2021 phòng GDĐT Yên Lạc - Vĩnh Phúc
Đề KSCL Toán 9 lần 1 năm 2020 – 2021 phòng GD&ĐT Yên Lạc – Vĩnh Phúc được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 04 câu, chiếm 02 điểm, phần tự luận gồm 04 câu, chiếm 08 điểm, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Hướng dẫn chấm đề KSCL Toán 9 lần 1 năm 2020 – 2021 phòng GD&ĐT Yên Lạc – Vĩnh Phúc: – Hướng dẫn chấm chỉ trình bày một cách giải với các ý cơ bản học sinh phải trình bày, nếu học sinh giải theo cách khác mà đúng và đủ các bước thì giám khảo vẫn cho điểm tối đa. – Trong mỗi bài, nếu ở một bước nào đó bị sai thì các bước sau có liên quan không được điểm. – Bài hình học bắt buộc phải vẽ đúng hình thì mới chấm điểm, nếu không có hình vẽ đúng ở phần nào thì giám khảo không cho điểm phần lời giải liên quan đến hình của phần đó. – Điểm toàn bài là tổng điểm của các ý, các câu, tính đến 0,25 điểm và không làm tròn.