Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Quảng Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Quảng Ninh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Cho tam giác đều ABC. Trên mỗi cạnh AB, BC, CA lần lượt lấy 4 điểm phân biệt và không điểm nào trùng với các đỉnh A, B, C. Hỏi lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập hợp 15 điểm đã cho (tính cả các điểm A, B, C)? + Một người chọn ngẫu nhiên một số điện thoại, trong đó mỗi số có mười chữ số và ba chữ số đầu cố định là 099. Số điện thoại này được gọi là may mắn nếu bốn chữ số tiếp theo là các chữ số chẵn đôi một khác nhau, ba chữ số cuối là các số lẻ và tổng ba chữ số này bằng 9. Tính xác suất để người đó nhận được số điện thoại may mắn. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB 3 BC 6 đường thẳng SA vuông góc với mặt phẳng ABCD. Điểm M thuộc đoạn BC sao cho 1 3 BM BC. Góc giữa đường thẳng SC và mặt phẳng SAB bằng 45°. a) Tính thể tích khối chóp S.ABCD. b) Tính khoảng cách giữa hai đường thẳng SM và AC. c) Gọi H và K lần lượt là hình chiếu vuông góc của A trên SM và SC. Chứng minh hình chóp A.CMHK nội tiếp một mặt cầu. Tính bán kính mặt cầu đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Đồng Tháp
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2018 2019 sở GD ĐT Đồng Tháp Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Đồng Tháp; đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2019.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh Bản PDF Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2018 – 2019, đây là kỳ thi nhằm phát hiện và tuyển chọn những em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bắc Ninh, các em được chọn sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh. Đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh có mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + . Mệnh đề nào dưới đây SAI? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. B. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(6;0;0), (0;6;0), P(0;0;6). Hai mặt câu có phương trình (S1): x^2 + y^2 + z^2 – 2x – 2y + 1 = 0 và (S2): x^2 + y^2 + z^2 – 8x + 2y + 2z + 1 = 0 cắt nhau theo đường tròn (C). Hỏi có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa (C) và tiếp xúc với ba đường thẳng MN, NP, PM? + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. Gọi S là tập các giá trị của tham số m để đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác OAB cân. Số tập con của tập S là?
Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 – 2019 sở GD ĐT Hà Nam
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 – 2019 sở GD ĐT Hà Nam Bản PDF Vừa qua, sở Giáo dục và Đào tạo Hà Nam đã tổ chức kỳ thi chọn học sinh giỏi khối THPT năm học 2018 – 2019 môn Toán dành cho học sinh lớp 12, đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam : + Trong mặt phẳng với hệ tọa độ Oxy, cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Có bao nhiêu điểm M thuộc trục Oy, có tung độ là số nguyên nhỏ hơn 2019 và thỏa mãn từ điểm M kẻ được 2 tiếp tuyến tới đồ thị (C) sao cho 2 tiếp điểm tương ứng nằm về 2 phía của trục Ox? [ads] + Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc các cạnh AB, AC sao cho mặt phẳng (DMN) luôn vuông góc với mặt phẳng (ABC). Đặt AM = x, AN = y. Tìm x, y để tam giác DMN có diện tích nhỏ nhất, lớn nhất. + Cho hàm số y = mx^3 – 3mx^2 + (2m + 1)x + 3 – m (1), với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho khoảng cách từ điểm I(1/2,15/4) đến đường thẳng AB đạt giá trị lớn nhất.
Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2018 2019 sở GD ĐT Vĩnh Long
Nội dung Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2018 2019 sở GD ĐT Vĩnh Long Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán THPT năm  học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào sáng và chiều ngày 20 tháng 01 năm 2019; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Vĩnh Long : + Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau. + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn tâm I nội tiếp tam giác ABC. Các đường thẳng AI, BI, CI lần lượt cắt đường tròn ngoại tiếp tam 13 5 giác ABC tại các điểm M, N, P (M, N, P không trùng với các đỉnh của tam giác ABC). Tìm tọa độ các đỉnh A, B, C biết rằng đường thẳng AB đi qua điểm Q(-1;1) và điểm A có hoành độ dương. + Cho đường tròn (C) có tâm O và bán kính R, hai đường kính AB, CD vuông góc với nhau. Điểm M (C), gọi H, K lần lượt là hình chiếu vuông góc của M trên AB và CD. Tìm vị trí điểm M để khi quay hình chữ nhật OHMK quanh đường thắng AB thì thể tích của khối trụ sinh ra là lớn nhất.