Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song

Nội dung Kiến thức và bài tập đường thẳng vuông góc và đường thẳng song song Bản PDF - Nội dung bài viết Kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song Kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song Tài liệu này bao gồm 22 trang được biên soạn bởi tác giả Toán Họa, tổng hợp kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song trong chương trình Hình học lớp 7 chương 1. Khái quát nội dung tài liệu kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song: BÀI 1. Hai góc đối đỉnh: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh góc kia. Hai góc đối đỉnh thì bằng nhau. Mỗi góc chỉ có một góc đối đỉnh với nó. Hai góc bằng nhau chưa chắc đã đối đỉnh. BÀI 2. Hai góc đối đỉnh: Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và tạo ra góc vuông. Qua một điểm cho trước, chỉ có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước. Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng đó tại trung điểm của nó. BÀI 3. Các góc tạo bởi một đường thẳng cắt hai đường thẳng: Hai đường thẳng vuông góc là hai đường thẳng cắt nhau và tạo ra góc vuông. Nếu hai đường thẳng cắt một đường thẵng thứ ba và tạo ra các góc so le bằng nhau, thì các điều kiện song song là: Hai góc so le trong còn lại bằng nhau. Hai góc đồng vị bằng nhau. Hai góc trong cùng phía bù nhau. BÀI 4. Hai đường thẳng song song: Hai đường thẳng song song (trong mặt phẳng) là hai đường thẳng không có điểm chung. Điều kiện để các đường thẳng là song song: Nếu đường thẳng cắt hai đường thẳng khác và tạo ra các góc so le bằng nhau, thì các đường thẳng đó song song. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song. BÀI 5. Tiên đề Ơclit về đường thẳng song song: Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó. Nếu hai đường thẳng song song bị cắt bởi một đường thẳng thứ ba, thì các điều kiện là: Hai góc so le trong bằng nhau. Hai góc đồng vị bằng nhau. Hai góc trong cùng phía bù nhau. BÀI 6. Từ vuông góc tới song song: Nếu hai đường thẳng cùng vuông góc với một đường thẳng thứ ba, thì chúng song song với nhau. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường kia. Hai đường thẳng cùng song song với một đường thẳng thứ ba thì chúng song song với nhau. BÀI 7. Định lí: Một tính chất được khẳng định là đúng bằng suy luận gọi là một định lí. Giả thiết của định lí là điều cho biết, kết luận của định lí là điều được suy ra. Chứng minh định lí là dùng luận để từ giả thiết suy ra kết luận. Đề kiểm tra Hình học lớp 7 chương 1: Trên đây là bản tóm tắt về nội dung kiến thức và bài tập về đường thẳng vuông góc và đường thẳng song song. Hy vọng thông tin này sẽ giúp bạn hiểu rõ hơn về chủ đề này và áp dụng vào việc học tập của mình.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề quan hệ giữa ba cạnh của một tam giác Toán 7
Tài liệu gồm 18 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. + Tồn tại một tam giác có độ dài ba cạnh là abc nếu: a b c b a c c a b hoặc b c a b c. + Trong trường hợp xác định được a là số lớn nhất trong ba số abc thì điều kiện để tồn tại tam giác chỉ cần: a b c. Dạng 2 . Chứng minh các bất đẳng thức về độ dài. Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức tam giác. + Cộng cùng một số vào hai vế của bất đẳng thức: a b a c b c. + Cộng từng vế hai bất đẳng thức cùng chiều: a b a c b. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa đường vuông góc và đường xiên Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Nhận biết đường vuông góc, đường xiên. Tìm khoảng cách của một điểm đến một đường thẳng. – Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. – Tính khoảng cách từ một điểm đến một đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2 . Quan hệ giữa đường vuông góc và đường xiên. – Sử dụng định lý đường vuông góc ngắn hơn đường xiên (từ một điểm đến cùng một đường thẳng). PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7
Tài liệu gồm 20 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. So sánh các góc trong một tam giác. + TH1: Nếu các góc cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 1: So sánh các cạnh đối diện với các góc đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. Dạng 2. So sánh các cạnh trong một tam giác. + TH1: Nếu các cạnh cần so sánh nằm trong cùng một tam giác thì ta áp dụng định lí 2: So sánh các góc đối diện với các cạnh đó. + TH2: Nếu các góc cần so sánh không cùng nằm trong cùng một tam giác thì ta dùng góc trung gian để so sánh. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề tam giác cân, đường trung trực của đoạn thẳng Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Chứng minh tam giác cân, tam giác đều và sử dụng tính chất của tam giác cân, tam giác đều để giải quyết bài toán. Dựa và dấu hiệu nhận biết của tam giác cân, tam giác đều. Dựa vào tính chất của tam giác cân, tam giác đều để tính số đo góc hoặc chứng minh các góc bằng nhau, các cạnh bằng nhau. Dạng 2 . Vận dụng tính chất của đường trung trực để giải quyết bài toán. Sử dụng tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Dạng 3 . Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. + Để chứng minh điểm M thuộc trung trực của đoạn thẳng AB, ta dùng nhận xét: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. + Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm phân biệt cách đều A và B hoặc dùng định nghĩa đường trung trực. PHẦN III . BÀI TẬP TỰ LUYỆN.