Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Đắk Nông

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Giới thiệu Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD&ĐT Đắk Nông Giới thiệu Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD&ĐT Đắk Nông Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022-2023 do Sở Giáo dục và Đào tạo tỉnh Đắk Nông tổ chức. Kỳ thi sẽ diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn một số câu hỏi từ Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD&ĐT Đắk Nông: - Một xe tải có chiều rộng là 2,4m, chiều cao là 2,5m muốn đi qua một cái cổng hình Parabol. Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25m. Hãy chứng minh a = -1 trong biểu diễn cổng parabol. - Một cái tháp được xây dựng bên bờ một con sông. Người ta nhìn thấy đỉnh tháp với góc nâng 60° từ một điểm đối diện tháp trên bờ sông và góc nâng 30° từ một điểm cách xa 20m. Tính chiều cao của tháp và bề rộng của con sông. - Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. Gọi H là giao điểm của BE và CF, vẽ đường tròn (K) đường kính BC. Chứng minh AF.AB = AE.AC và ba điểm M, H, N thẳng hàng khi từ A vẽ tiếp tuyến với đường tròn (K). Đây là những câu hỏi thú vị và thách thức dành cho các em học sinh tham gia kỳ thi học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phú Xuyên - Hà Nội (Vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội (Vòng 2). Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phú Xuyên – Hà Nội (Vòng 2) : + Tìm số nguyên tố p sao cho 2p + 1 bằng lập phương của một số tự nhiên. + Cho nửa đường tròn tâm O đường kính AB. Gọi C là một điểm nằm trên nữa đường tròn (O) (C khác A, C khác B). Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C, I là trung điểm của CH, J là trung điểm của DH. a) Chứng minh CH.HI = HB.CJ b) Gọi E là giao điểm của HD và BI. Chứng minh HE.HD = HC2. c) Xác định vị trí của điểm C trên nửa đường tròn (O) để AH + CH đạt giá trị lớn nhất. + Trên bảng, người ta viết các số tự nhiên liên tiếp từ 1 đến 100 sau đó thực hiện trò chơi như sau: Mỗi lần xóa hai số a, b bất kỳ trên bảng và viết một số mới bằng a + b – 2 lên bảng. Việc làm này thực hiện liên tục, hỏi sau 99 bước số cuối cùng còn lại trên bảng là bao nhiêu? Tại sao?
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phúc Yên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Phúc Yên, tỉnh Vĩnh Phúc; đề thi gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phúc Yên – Vĩnh Phúc : + Nhân ngày Tết Trung thu, một rạp chiếu phim phục vụ khán giả một bộ phim hoạt hình với quy định về giá bán vé như sau: + Loại I (dành cho trẻ từ 6 đến 13 tuổi): 50.000đ một vé. + Loại II (dành cho người trên 13 tuổi): 100.000đ một vé. Lãnh đạo rạp chiếu phim tính được rằng: Để không phải bù lỗ số tiền bán vé thu được phải đạt tối thiểu 20 triệu đồng. Hết thời gian bán vé, nhân viên báo cáo với lãnh đạo tổng số vé bán được là 500 vé. Lãnh đạo rạp chiếu phim khẳng định ngay là không phải bù lỗ. Em hãy giải thích khẳng định đó? Số tiền lãi rạp thu được tối thiểu là bao nhiêu, biết rằng mỗi trẻ em phải có ít nhất một người lớn đi kèm. + Cho ba điểm A, O, B thẳng hàng (O nằm giữa A và B). Kẻ hai tia Ax, By cùng vuông góc và cùng phía với AB. Dựng góc vuông uOv, tia Ou cắt Ax tại C, tia Ov cắt By tại D. Cho OA = a, OB = b, OC = 2a. Tính theo a, b diện tích hình thang ABDC. + Cho tam giác đều ABC, E là điểm thuộc cạnh AC và không trùng với A, K là trung điểm của AE. Đường thẳng đi qua I và vuông góc với AB tại F cắt đường thẳng đi qua C và vuông góc với BC tại D. a) Chứng minh BCKF là hình thang cân. b) Tìm vị trí của E sao cho đoạn KD ngắn nhất.
Đề HSG Toán THCS cấp huyện năm 2023 - 2024 phòng GDĐT Diên Khánh - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diên Khánh, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Tư ngày 04 tháng 10 năm 2023. Trích dẫn Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa : + Cho a, b, c là ba số nguyên phân biệt và đa thức P(x) có hệ số nguyên. Chứng minh rằng ít nhất một trong các đẳng thức sau là sai: P(a) = b; P(b) = c; P(c) = a. + Tìm tất cả các số nguyên tố p để p vừa là tổng vừa là hiệu của hai số nguyên tố. + Cho tứ giác ABCD có ABD = ACD = 90°. Gọi I, K theo thứ tự là hình chiếu vuông góc của B, C trên cạnh AD. Gọi M là giao điểm của CI và BK, O là giao điểm của AC và BD. Qua O vẽ OE vuông góc với BI tại E. a) Chứng minh rằng: OB.IB = OE.AB. b) Chứng minh rằng: OM vuông góc AD. c) Gọi H là giao điểm của AB và DC, L là giao điểm của OM và AD. Chứng minh rằng?
Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023.