Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 cấp tỉnh năm học 2019 - 2020 sở GDĐT Quảng Nam

Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi chọn học sinh giỏi môn Toán khối lớp 9 năm học 2019 – 2020. Đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 9 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Quảng Nam : + Cho nửa đường tròn tâm O, đường kính AB = 2a, H là điểm nằm trên đoạn thẳng OA sao cho HA = 2HO. Đường thẳng vuông góc với AB tại H cắt nửa đường tròn đã cho tại C. Hạ HP vuông góc với AC tại P, HQ vuông góc với BC tại Q. a) Chứng minh OC vuông góc với PQ. b) Gọi I là giao điểm của OC và PQ. Tính độ dài đoạn thẳng CI theo a. c) Lấy điểm M trên tia đối của tia BA (M khác B), đường thẳng MC cắt nửa đường tròn đã cho tại điểm thứ hai là D. Hai đường tròn ngoại tiếp hai tam giác OAC và OBD cắt nhau tại điểm thứ hai là K, gọi E là giao điểm của AD và BC. Chứng minh bốn điểm A, B, E, K cùng nằm trên một đường tròn và KO vuông góc với KE. [ads] + Cho tam giác ABC vuông tại A có AC = 2AB, H là chân đường cao vẽ từ A của tam giác ABC, D là trung điểm của HC. a) Chứng minh tam giác ADH vuông cân. b) Gọi F là trung điểm AC, dựng hình vuông ABEF. Chứng minh tứ giác ABED nội tiếp trong đường tròn và tính diện tích tam giác ADE khi AB = 2 cm. + Cho phương trình x^2 – 3(m + 1)x + 2m^2 + 7m – 4 = 0 với m là tham số. Tìm m để phương trình đã cho có hai nghiệm phân biệt sao cho bình phương của một nghiệm bằng ba lần nghiệm còn lại.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Đắk Lắk
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Đắk Lắk Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GD ĐT Đắk Lắk Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Kỳ thi sẽ diễn ra vào thứ Tư ngày 29 tháng 03 năm 2023. Đề thi bao gồm các bài toán thú vị và phức tạp như: Cho hàm số y = -4x^2 có đồ thị là parabol (P) và một điểm Q(0; -9). Hãy tìm hai điểm M, N trên (P) sao cho tứ giác OMQN là một tứ giác lồi có diện tích bằng 27/2 cm2. Chứng minh rằng trong tam giác ABC, với tam giác nhọn nội tiếp đường tròn (O;R), tiếp tuyến tại A của (O) cắt BC tại M, tiếp tuyến MD của (O) cắt AC tại D, G là trung điểm của EF, MA^2 = MB*MC, BC = 2R.sinBAC, AB*DB = AC*DC. Cho tam giác ABC vuông tại A. Kẻ IM vuông góc với BC, IN vuông góc với AC, IK vuông góc với AB. Xác định vị trí điểm I sao cho tổng IM^2 + IN^2 + IK^2 là nhỏ nhất. Đây là cơ hội thú vị để thử thách kiến thức và kỹ năng toán học của các em học sinh lớp 9. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng
Nội dung Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF Chúng tôi hân hạnh giới thiệu đến quý thầy cô giáo và các bạn học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 THCS năm học 2022 - 2023 do Sở Giáo dục và Đào tạo thành phố Hải Phòng tổ chức. Đề thi này bao gồm các câu hỏi thú vị và ý nghĩa, bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.Một trong những câu hỏi trong đề thi là về một định lí trong hình học: Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. Câu hỏi đề cập đến việc chứng minh tứ giác BCQP nội tiếp và các bước chứng minh liên quan đến đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm K.Đề cập đến các vấn đề khác nhau như tối ưu hóa diện tích hình vuông để chứa 5 hình tròn không chồng lên nhau, hay việc chứng minh một công thức toán học phức tạp.Đề thi học sinh giỏi Toán lớp 9 thành phố Hải Phòng năm học 2022 - 2023 là cơ hội để các em thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Chúc các em học sinh đạt kết quả cao và phấn đấu trên con đường học tập.
Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Đoan Hùng Phú Thọ
Nội dung Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Đoan Hùng Phú Thọ Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 phòng GD&ĐT Đoan Hùng - Phú Thọ Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 phòng GD&ĐT Đoan Hùng - Phú Thọ Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp huyện năm học 2022 – 2023 do Phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ tổ chức. Đề thi được thiết kế với hình thức 40% trắc nghiệm và 60% tự luận, thời gian làm bài là 150 phút (không tính thời gian giao đề). Đề thi có đáp án và lời giải chi tiết để các em có thể tự kiểm tra và ôn tập sau khi thi xong. Trích dẫn một số câu hỏi trong đề thi: Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. Hãy chứng minh rằng bốn điểm OMHI cùng thuộc một đường tròn. Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? Cho \(P(x)\) là một đa thức bậc \(n\) với hệ số nguyên, \(n \geq 2\). Biết \(P(1) = 2022\). Chứng minh rằng phương trình \(P(x) = 0\) không có nghiệm nguyên. Nếu quý thầy cô và các em quan tâm đến đề thi, vui lòng tải file WORD dưới đây để xem chi tiết và chuẩn bị cho kỳ thi sắp tới. Mong rằng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng Toán của mình. Chúc các em thi tốt!
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 cấp tỉnh sở GD&ĐT Lạng Sơn Đề học sinh giỏi Toán lớp 9 cấp tỉnh sở GD&ĐT Lạng Sơn Chào đón quý thầy cô và các em học sinh lớp 9! Đề thi chọn học sinh giỏi Toán cấp tỉnh năm học 2022 – 2023 sở GD&ĐT Lạng Sơn đã được công bố. Hãy cùng Sytu khám phá những bài toán thú vị sau đây: 1. Cho tam giác ABC nhọn, nội tiếp (O), AB < AC. Phân giác trong của góc BAC cắt BC tại D và cắt (O) tại điểm thứ hai P. Gọi M là giao điểm của OP và BC; F đối xứng với D qua M. Lấy điểm H nằm trên AO và E nằm trên AD sao cho HD; FE cùng vuông góc với BC. a. Chứng minh rằng tam giác AHD và PFE là các tam giác cân. b. Chứng minh tứ giác BHCK nội tiếp trong một đường tròn (O1), với K là giao điểm của HD và FP. c. Chứng minh rằng AQ là tiếp tuyến của đường tròn (O), với Q là giao điểm của HT và BC. 2. Tìm các số nguyên dương x, y, z thỏa mãn: 3x² – 9y² + 4z² + 6y²z² = 243. 3. Trong một đa giác đều có 2023 đỉnh, đánh dấu các đỉnh bằng chữ số 0 hoặc 1. Chứng minh rằng luôn chọn ra được ba đỉnh giống nhau tạo thành tam giác cân. Hãy cùng thử sức và rèn luyện kỹ năng giải bài toán của mình qua đề thi học sinh giỏi Toán lớp 9 cấp tỉnh. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!