Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Thái Nguyên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Thái Nguyên, tỉnh Thái Nguyên; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Thái Nguyên : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 (m khác 2). Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt Ox tại điểm A, cắt Oy tại điểm B sao cho ABO = 30 độ. + Cho nửa đường tròn tâm O, đường kính AB, điểm M di động trên nửa đường tròn đó (M khác A, M khác B). Gọi điểm H là hình chiếu vuông góc của điểm M trên đường thẳng AB. Vẽ đường tròn đường kính AH, đường tròn đường kính BH. Đường thẳng MA cắt đường tròn đường kính AH tại điểm E (E khác A). Đường thẳng MB cắt đường tròn đường kính BH tại điểm F (F khác B). a. Chứng minh ME.MA = MF.MB. b. Gọi K, G lần lượt là hai điểm đối xứng của điểm H qua các đường thẳng MA, MB. Chứng minh ba điểm M, K, G thẳng hàng. c. Chứng minh MH3 = AB.AE.BF. d. Gọi I, J lần lượt là tâm của đường tròn đường kính AH và BH. Cho AB = 2R. Xác định vị trí của điểm M để diện tích tứ giác IEFJ đạt giá trị lớn nhất. Tính giá trị đó theo R. + Cho số tự nhiên n bất kỳ. Tìm tất cả các số nguyên tố p sao cho số A = 2026n2 + 1014(n + p) luôn viết được dưới dạng hiệu của hai số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Cần Thơ : + Phòng Giáo dục và Đào tạo huyện A chọn một nhóm học sinh cấp Tiểu học và học sinh cấp Trung học cơ sở để tham gia Kỳ thi Violympic cấp tỉnh. Ban đầu, Phòng giáo dục và Đào tạo huyện A dự kiến chọn 60% học sinh Tiểu học trong nhóm học sinh dự thi. Do đơn vị tổ chức không đủ máy vi tính nên Phòng giáo dục và Đào tạo huyện A phải giảm số học sinh dự thi của mỗi cấp là 30. Vì vậy số học sinh Tiểu học được chọn chiếm 62% trong nhóm học sinh dự thi. Hỏi trong nhóm học sinh dự thi theo thực tế có bao nhiêu học sinh của mỗi cấp học? + Anh Bình cần rút tiền trong thẻ ATM để chi tiêu cá nhân nhưng lại quên mật khẩu đăng nhập tài khoản. Biết rằng mật khẩu là một số chính phương A có bốn chữ số nếu bớt đi mỗi chữ số của số A một đơn vị thì được số mới là số chính phương có bốn chữ số. Em hãy giúp anh Bình tìm lại mật khẩu đã quên. + Cho hai đường tròn O R và O R với R cắt nhau tại hai điểm A và B Trên tia đối của tia AB lấy điểm C. Qua điểm C kẻ cách tiếp tuyến CD CE với đường tròn O trong đó D, E là các tiếp điểm và E nằm trong đường tròn O. Các đường thẳng AD, AE cắt đường tròn O lần lượt tại M và N (M và N khác A). Tia DE cắt đoạn thẳng MN tại I. Chứng minh: a) Các điểm B N I E cùng nằm trên một đường tròn b) AE MB AB MI. c) Đường thẳng O I’ vuông góc với đường thẳng MN.
Đề thi học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề thi học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho một mảnh đất hình vuông, chiều dài mỗi cạnh là 1000m. Trên mảnh đất đã trồng 4500 cây ăn trái các loại, cây lớn nhất có đường kính 0,5m. Người ta muốn xây dựng các căn nhà nghỉ dưỡng trên mảnh đất này để làm khu du lịch sinh thái. Hãy chứng minh rằng người ta có thể xây dựng được ít nhất 60 căn nhà nghỉ dưỡng trên mảnh đất (với diện tích mỗi căn nhà là 200m2) mà không phải chặt đi một cây ăn trái nào đã trồng trên mảnh đất. + Cho đường tròn tâm O đường kính AB (A, B cố định). Lấy hai điểm M, N lần lượt thuộc hai nửa đối nhau của đường tròn (O) sao cho góc MAN luôn bằng 60° (M khác B; N khác B). Đường thẳng BN cắt tia AM tại E, đường thẳng BM cắt tia AN tại F. a) Tính tỉ số EF AB. b) Khi tam giác AMN đều, gọi C là điểm di động trên cung nhỏ AN (C khác A; C khác N). Đường thẳng qua M và vuông góc với AC cắt đường thẳng NC tại D. Xác định vị trí của điểm C để diện tích tam giác MCD là lớn nhất. + Cho tấm bìa hình tam giác ABC có trọng tâm G. Gấp tấm bìa theo đường EF sao cho đỉnh C trùng với trọng tâm G (E, F lần lượt nằm trên hai cạnh CA, CB). Khi đó, chứng minh rằng: AC BC EC FC 6.