Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2019 - 2020 phòng GDĐT Long Biên - Hà Nội

Thứ Tư ngày 10 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 – 2020 phòng GD&ĐT Long Biên – Hà Nội : + Bài toán liên quan đến ứng dụng toán học vào thực tế: Để ủng hộ các gia đình gặp khó khăn tại địa phương do ảnh hưởng của dịch Covid 19, một tổ chức thiện nguyện đã dự kiến chở 720 tạ gạo chia đều bằng một số xe cùng loại. Lúc sắp khởi hành, do được bổ sung thêm 2 xe cùng loại; vì vậy so với dự định, mỗi xe chở ít đi 18 tạ gạo. Hỏi lúc đầu ban tổ chức đã chuẩn bị bao nhiêu xe chở gạo? [ads] + Thùng rác inox hình trụ tròn nắp lật xoay được sử dụng khá phổ biến do nắp được thiết kế có trục quay, mang đến khả năng tự cân bằng trở về trạng thái ban đầu sau khi bỏ rác. Biết thùng có đường kính đáy 40cm và chiều cao 60cm. Hãy tính diện tích inox để làm ra chiếc thùng rác trên (coi các mép gấp khi làm thùng không đáng kể) (hình minh họa). + Cho đường tròn (O;R), đường kính AB và CD vuông góc với nhau. Điểm M di động trên cung nhỏ BC. Gọi N, E lần lượt là giao điểm của AM với CD, CB. Tia CM cắt AB tại S, MD cắt AB tại F. Kẻ CH vuông góc với AM tại H. a) Chứng minh bốn điểm A, C, H, O cùng thuộc một đường tròn. b) Chứng minh: SM.SC = SA.SB = SO.SF. c) Chứng minh OH // DM và tia OH là tia phân giác của góc COM. d) Chứng minh diện tích tứ giác ANFD không phụ thuộc vào vị trí điểm M di động trên cung nhỏ BC.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Hải Dương, tỉnh Hải Dương; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 03 năm 2023; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Hải Dương : + Hai công nhân cùng làm chung một công việc thì hoàn thành sau 10 giờ. Nếu người thứ nhất làm một mình trong 6 giờ rồi nghỉ, sau đó người thứ hai làm tiếp trong 3 giờ thì được 40% công việc. Hỏi nếu làm một mình thì mỗi công nhân phải làm trong bao lâu hoàn thành công việc đó? + Cho phương trình: x2 − 2x + m – 1 = 0 (m là tham số). Tìm m nguyên dương để phương trình có hai nghiệm x1; x2 thỏa mãn x13 + x23 < 15. + Cho AC là một dây khác đường kính của đường tròn (O), B là một điểm trên cung nhỏ AC sao cho AB < BC, kẻ đây BD của đường tròn (O) vuông góc với AC tại H. Kẻ BI vuông góc với CD (I thuộc CD) a) Chứng minh bốn điểm B, H, I, C cùng thuộc một đường tròn. b) Kẻ BK vuông góc với đường thẳng AD (K thuộc AD). Chứng minh BHK = BCD và ba điểm H, I, K thẳng hàng. c) Gọi M, N lần lượt là trung điểm của AD và HI. Chứng minh rằng BN vuông góc MN.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Nam Sách - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Nam Sách, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2023; đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Nam Sách – Hải Dương : + Cho ba đường thẳng phân biệt y = 3x – 1; y = (m2 – 1)x + m – 3; y = x + 1. Tìm m để ba đường thẳng đã cho đồng quy tại một điểm. + Hai tổ sản xuất dự kiến làm 1000 chiếc khẩu trang trong một thời gian quy định. Khi làm việc do cải tiến kỹ thuật, tổ I đã vượt mức 10%, tổ II vượt mức 15% nên hết thời gian quy định hai tổ đã làm được 1130 chiếc khẩu trang. Hỏi theo kế hoạch, mỗi tổ phải làm bao nhiêu chiếc khẩu trang? + Cho tam giác ABC nhọn AB < BC nội tiếp đường tròn tâm O. Kẻ BD vuông góc với AC tại D, kẻ DI vuông góc với AB tại I, DH vuông góc với BC tại H. 1) Chứng minh: bốn điểm B, H, D, I cùng nằm trên một đường tròn? 2) Chứng minh: BI.BA = BH.BC và ABD CBO. 3) Tia IH cắt (O) tại K. Chứng minh: tam giác BDK cân?
Đề kiểm tra Toán 9 tháng 3 năm 2023 trường THCS Thanh Quan - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 3 năm học 2022 – 2023 trường THCS Thanh Quan, quận Hoàn Kiếm, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2023. Trích dẫn Đề kiểm tra Toán 9 tháng 3 năm 2023 trường THCS Thanh Quan – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai người công nhân cùng làm việc và hoàn thành trong 6 giờ. Nếu một mình người thứ nhất làm trong 2 giờ, sau đó một mình người thứ hai làm tiếp trong 3 giờ thì hai người làm được 2 5 công việc. Hỏi nếu mỗi người làm một mình thì sau bao nhiêu giờ sẽ hoàn thành công việc? + Cho đường tròn (O), lấy điểm A nằm ngoài đường tròn (O), qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B C là các tiếp điểm). Vẽ cát tuyến AEF (với AE AF) sao cho AE nằm giữa AO và AC. Đoạn thẳng BC cắt AO và AF lần lượt tại H và D. a) Chứng minh: 4 điểm ABOC cùng thuộc một đường tròn. b) Chứng minh: 2 AC AE AF và tứ giác EHOF nội tiếp. c) Đường thẳng qua E và song song với BF cắt AB BC lần lượt tại M và N. Chứng minh: E là trung điểm của MN. + Cho Parabol 2 Pyx và đường thẳng (d): d y x 2. a) Tìm tọa độ giao điểm của đường thẳng (d) và Parabol (P). b) Tính diện tích tam giác OAB với A và B là các giao điểm của (d) với (P). (Biết hoành độ của điểm A nhỏ hơn hoành độ của điểm B).
Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thượng Cát - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Thượng Cát, quận Bắc Từ Liêm, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát Toán 9 tháng 2 năm 2023 trường THCS Thượng Cát – Hà Nội : + Trong kì thi vào THPT, hai trường A và B có tổng cộng 500 học sinh dự thi. Kết quả hai trường đó có 420 học sinh trúng tuyển. Trường A có 80% học sinh trúng tuyển, trường B có 90% học sinh trúng tuyển. Hỏi mỗi trường có bao nhiêu học sinh trúng tuyển. + Chiều cao của một cột cờ là đoạn thẳng AH (hình vẽ). Khi tia nắng mặt trời tạo với mặt đất một góc 680 (góc ABH = 680), người ta đo được khoảng cách từ chân cột cờ H đến điểm B dài 12m. Hãy tính chiều cao cột cờ AH (làm tròn đến chữ số thập phân thứ nhất). + Từ điểm M bên ngoài đường tròn (O;R), vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của MO và AB. 1) Chứng minh 4 điểm A, O, B, M cùng thuộc một đường tròn. 2) Kẻ đường kính BC của đường tròn (O). Gọi I là trung điểm của AC. Chứng minh tứ giác AHOI là hình chữ nhật. 3) Tiếp tuyến tại C của đường tròn (O) cắt tia BA tại D; tia DI cắt đoạn OC tại K; tia DO cắt đoạn AC ở E. Chứng minh BD CD BO CI và BOD EIK.