Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Nguyễn Tài Chung

Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, tổng hợp tóm tắt lý thuyết, phương pháp giải toán và bài tập trắc nghiệm có đáp án chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, hỗ trợ học sinh trong quá trình học tập chương trình Giải tích 12 chương 1. BÀI 1 . LŨY THỪA. Dạng 1. Rút gọn biểu thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Chứng minh bất đẳng thức. Dạng 4. Các bài tập sử dụng công thức lãi kép. Dạng 5. Một số bài tập khác. BÀI 2 . LÔGARIT. Dạng 6. Tính toán, rút gọn về lôgarit. Dạng 7. Chứng minh đẳng thức. Dạng 8. So sánh hai số ở dạng lôgarit. Bất đẳng thức chứa lôgarit. Dạng 9. Bài tập ứng dụng lôgarit thập phân. Dạng 10. Bài tập ứng dụng công thức lãi kép liên tục. Dạng 11. Biểu diễn lôgarit theo các lôgarit cho trước. BÀI 3 . HÀM SỐ MŨ, HÀM SỐ LÔGARIT VÀ HÀM SỐ LŨY THỪA. Dạng 12. Tìm tập xác định của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 13. Khảo sát và vẽ đồ thị hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 14. Chứng minh đẳng thức hàm. Dạng 15. Xét tính chẵn, lẻ của hàm số mũ, lôgarit, lũy thừa. Dạng 16. Tính giới hạn. Dạng 17. Tính đạo hàm. Dạng 18. Chứng minh đẳng thức chứa đạo hàm. Dạng 19. Chứng minh đẳng thức chứa vi phân. Dạng 20. Xét tính đơn điệu của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 21. Tìm giá trị lớn nhất, giá trị bé nhất của hàm số mũ, hàm số lôgarit. Dạng 22. Một số bất đẳng thức được chứng bằng cách khảo sát hàm số mũ, hàm số lôgarit. Dạng 23. Chứng minh bất đẳng thức bằng cách lôgarit hóa. Dạng 24. Bất đẳng thức Becnuli. Dạng 25. Dùng đạo hàm để tính giới hạn dạng 0/0: limf(x) khi x→a. BÀI 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ. Dạng 26. Đưa về cùng một cơ số. Dạng 27. Đặt ẩn phụ. Dạng 28. Phương pháp hàm số. Dạng 29. Phương trình dạng hiệu các hàm đơn điệu. Dạng 30. Phép đặt ẩn phụ bậc hai u = (ab)^x/(A.a^2x + B.b^2x). Dạng 31. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 32. Phương trình, bất phương trình mũ chứa tham số. Dạng 33. Phương trình đưa được về dạng tích. BÀI 5 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 34. Đưa về cùng một cơ số. Dạng 35. Phương pháp hàm số. Dạng 36. Phương trình dạng hiệu các hàm đơn điệu. Dạng 37. Phương trình loga f(x) = logb g(x) với a khác b. Dạng 38. Sử dụng công thức đổi cơ số, phương pháp logarit hóa. Dạng 39. Sử dụng công thức a logb c = c logb a. Dạng 40. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 41. Phương trình, bất phương trình lôgarit chứa tham số. BÀI 6 . HỆ MŨ VÀ LÔGARIT. Dạng 42. Một số hệ giải được bằng phương pháp thế. Dạng 43. Hệ mũ, lôgarit đối xứng loại 1, đối xứng loại 2. Dạng 44. Hệ có yếu tố đẳng cấp. Dạng 45. Một số hệ không mẫu mực. Dạng 46. Hệ có tham số. Dạng 47. Giải hệ bằng cách sử dụng tính đơn điệu của hàm số.

Nguồn: toanmath.com

Đọc Sách

Giải chi tiết các dạng toán lũy thừa, mũ và logarit - Nguyễn Bảo Vương
Tài liệu gồm 261 trang phân dạng, tuyển chọn và giải chi tiết các bài tập chủ đề lũy thừa, mũ và logarit (Chương 2 – Giải tích 12). Các dạng toán được đề cập bao gồm: + Bài tập tính đạo hàm của hàm số lũy thừa – mũ – logarit (117 bài toán) + Các bài toán liên quan đến tính đơn điệu – cực trị – tiệm cận hàm số lũy thừa – mũ – logarit (42 bài toán) + Các bài toán liên quan đến tập xác định của hàm số lũy thừa – mũ – logarit (95 bài toán) + Các bài toán liên quan đến công thức biến đổi lũy thừa – mũ – logarit (157 bài toán) + Các bài toán liên quan đến đồ thị hàm số lũy thừa – mũ – logarit (43 bài toán) [ads] + Các bài toán liên quan đến phương trình mũ – logarit (150 bài toán) + Các bài toán liên quan đến bất phương trình mũ – logarit (114 bài toán) + Các bài toán liên quan đến phương trình, bất phương trình mũ – logarit chứa tham số (43 bài toán) + Các bài toán liên quan đến tìm giá trị lớn nhất – giá trị nhỏ nhất, tính tổng của biểu thức (19 bài toán) + Các bài toán thực tế liên quan đến hàm lũy thừa – mũ – logarit (44 bài toán) Tài liệu do thầy Nguyễn Bảo Vương tổng hợp và biên soạn.
Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Cao Tuấn
Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit do thầy Cao Tuấn biên soạn gồm 21 trang. Nội dung tài liệu gồm các phần: A. KIẾN THỨC CẦN NHỚ I. LŨY THỪA 1. Lũy thừa với số mũ nguyên 2. Căn bậc n và lũy thừa với số mũ hữu tỉ 3. Lũy thừa với số mũ thực [ads] II. HÀM SỐ LŨY THỪA 1. Khái niệm hàm số lũy thừa 2. Đạo hàm của hàm số lũy thừa 3. Sự biến thiên của hàm số lũy thừa B. MỘT SỐ VÍ DỤ VỀ SỬ DỤNG KỸ THUẬT GIẢI NHANH C. VÍ DỤ MINH HỌA D. CÂU HỎI TRẮC NGHIỆM RÈN LUYỆN
Chuyên đề hàm số lũy thừa, hàm số mũ, hàm số lôgarit - Nguyễn Ngọc Dũng
Bắt đầu từ năm 2017, môn toán trong kì thi THPT Quốc Gia sẽ diễn ra dưới hình thức trắc nghiệm. Nắm bắt được xu hướng đó, nhằm giúp các em học sinh có một tài liệu tự luận kết hợp với trắc nghiệm hay và bám sát chương trình, nhóm chúng tôi biên soạn ebook chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Ebook là một trong các chuyên đề do nhóm tác giả biên soạn. Trong ebook này, nhóm tác giải đã tổng hợp các câu trắc nghiệm từ gần 200 đề thi thử trên cả nước, giúp các em chinh phục kỳ thi THPT Quốc Gia một cách hiệu quả nhất. Mục lục Chủ đề 1. Công thức mũ. Công thức lũy thừa 1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Rút gọn biểu thức chứa lũy thừa 2.2. Chứng minh đẳng thức chứa lũy thừa 2.3. So sánh các biểu thức chứa lũy thừa 3. Bài tập trắc nghiệm Chủ đề 2. Công thức lôgarit  1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Tính toán – rút gọn biểu thức có chứa lôgarit 2.2. Chứng minh đẳng thức chứa lôgarit 2.3. So sánh các lôgarit 2.4. Biểu diễn một lôgarit theo các lôgarit khác 3. Bài tập trắc nghiệm [ads] Chủ đề 3. Hàm số lũy thừa. Hàm số mũ. Hàm số lôgarit  1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Tìm tập xác định của hàm số 2.2. Đạo hàm – giá trị lớn nhất, nhỏ nhất 2.3. Đồ thị của hàm số mũ – hàm số lũy thừa – hàm số lôgarit 3. Bài tập trắc nghiệm Chủ đề 4. Phương trình mũ 1. Phương pháp đưa về cùng cơ số 2. Phương pháp lôgarit hóa 3. Phương pháp đặt ẩn phụ 4. Phương pháp đưa về phương trình tích 5. Phương pháp hàm số 6. Bài tập trắc nghiệm Chủ đề 5. Phương trình lôgarit  1. Phương pháp đưa về cùng cơ số 2. Phương pháp mũ hóa 3. Phương pháp đặt ẩn phụ 4. Phương pháp đưa về phương trình tích 5. Phương pháp hàm số 6. Bài tập trắc nghiệm Chủ đề 6. Bất phương trình mũ 1. Phương pháp đưa về cùng cơ số 2. Phương pháp đặt ẩn phụ 3. Phương pháp lôgarit hóa 4. Bài tập trắc nghiệm Chủ đề 7. Bất phương trình lôgarit  1. Phương pháp đưa về cùng cơ số 2. Phương pháp đặt ẩn phụ 3. Bài tập trắc nghiệm Chủ đề 8. Các bài toán thực tế 1. Phương pháp 2. Bài tập tự luận 3. Bài tập trắc nghiệm
Chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số logarit - Trần Quốc Nghĩa
Tài liệu phân dạng, hướng dẫn phương pháp giải kèm bài tập mẫu và bài tập trắc nghiệm có đáp án chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số logarit trong chương trình Giải tích 12. Nội dung tài liệu gồm các phần: Vấn đề 1. Lũy thừa với số mũ hữu tỉ – số mũ thực + Dạng 1. Tính toán – rút gọn biểu thức lũy thừa + Dạng 2. So sánh các lũy thừa hay căn số + Dạng 3. Bài toán lãi kép Vấn đề 2. Logarit + Dạng 1. Tính toán – rút gọn biểu thức có chứa logarit + Dạng 2. So sánh hai logarit + Dạng 3. Biểu diễn một logarit theo các logarit khác + Dạng 4. Chứng minh đẳng thức chứa logarit + Dạng 5. Bài toán lãi kép Vấn đề 3. Hàm số mũ – hàm số logarit + Dạng 1. Tìm tập xác định của hàm số + Dạng 2. Đạo hàm của hàm số mũ và logarit + Dạng 3. Gtln và gtnn của hàm số mũ và logarit + Dạng 4. Khảo sát sự biến thiên và vẽ đồ thị hàm số + Dạng 5. Tìm giới hạn của các hàm số mũ và logarit + Dạng 6. Dùng tính đơn điệu để chứng minh bất đẳng thức chứ mũ logarit [ads] Vấn đề 4. Phương trình mũ + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp logarit hóa + Dạng 4. Phương pháp đưa về phương trình tích + Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số Vấn đề 5. Bất phương trình mũ + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp logarit hóa Vấn đề 6. Phương trình logarit + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp mũ hóa + Dạng 4. Phương pháp đưa về phương trình tích + Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số Vấn đề 7. Bất phương trình logarit + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ Vấn đề 8. Hệ phương trình mũ – logarit Vấn đề 9. Phương trình. Hệ phương trình bất phương trình có tham số Bài tập trắc nghiệm + Vấn đề 1. Lũy thừa + Vấn đề 2. Logarit + Vấn đề 3. Hàm số mũ – hàm số logarit – hàm số lũy thừa + Vấn đề 4. Phương trình – bất phương trình mũ + Vấn đề 5. Phương trình – bất phương trình logarit + Vấn đề 6. Bài tập trắc nghiệm (trích từ 7 đề của bgd) Bảng đáp án bài tập trắc nghiệm