Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai

Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề góc với đường tròn
Tài liệu gồm 30 trang, hướng dẫn giải các dạng toán chuyên đề góc với đường tròn: góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung góc có đỉnh bên trong, bên ngoài đường tròn, giúp học sinh học tốt chương trình Hình học 9 chương 3. CHỦ ĐỀ 1 . GÓC Ở TÂM. Để tính số đo của góc ở tâm, số đo của cung bị chắn, ta sử dụng các kiến thức sau. + Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. + Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ (có chung hai đầu mút với cung lớn). + Số đo của nửa đường tròn bằng 180 độ. Cung cả đường tròn có số đo 360 độ. + Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. + Sử dụng quan hệ đường kính và dây cung. CHỦ ĐỀ 2 . GÓC NỘI TIẾP – GÓC TẠO BỞI TIẾP TUYẾN VÀ DÂY CUNG. + Điểm nằm chính giữa cung chia cung đó thành hai cung có số đo bằng nhau. Hai góc nội tiếp chắn hai cung đó thì bằng nhau. + Để chứng minh đẳng thức hình học, suy nghĩ quy về chứng minh tam giác đồng dạng dựa vào các góc nội tiếp cùng chắn một cung hoặc hai cung bằng nhau trong một đường tròn. + Góc nội tiếp chắn nửa đường tròn là góc vuông. + Góc nội tiếp (nhỏ hơn bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. CHỦ ĐỀ 3 . GÓC CÓ ĐỈNH BÊN TRONG VÀ BÊN NGOÀI ĐƯỜNG TRÒN. + Gặp bài toán tiên quan đến những góc có đỉnh ở bên trong hay bên ngoài đường tròn ta thường tính số đo của chúng theo số đo các cung bị chắn rồi biến đổi tổng hoặc hiệu của hai cung thành một cung. + Số đo của góc nội tiếp bằng nửa số đo của góc ở tâm cùng chắn một cung. + Số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. CHỦ ĐỀ 4 . MỘT SỐ BÀI TẬP GÓC VỚI ĐƯỜNG TRÒN. + Dạng 1. Góc nội tiếp – góc tạo bởi tia tiếp tuyến và dây cung. + Dạng 2. Góc có đỉnh ở bên trong và bên ngoài đường tròn.
Chuyên đề hệ thức lượng trong tam giác vuông
Tài liệu gồm 26 trang, hướng dẫn sử dụng các hệ thức lượng trong tam giác vuông để giải một số dạng bài tập liên quan trong chương trình Hình học 9 chương 1. VẤN ĐỀ 1 . HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. I. Lý thuyết. II. Bài tập. VẤN ĐỀ 2 . TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. I. Lý thuyết. 1. Định nghĩa. 2. Định lí. 3. Một số hệ thức cơ bản. 4. So sánh các tỉ số lượng giác. II. Bài tập. VẤN ĐỀ 3 . MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG. I. Lý thuyết. 1. Định lí. 2. Giải tam giác vuông. II. Bài tập. VẤN ĐỀ 4 . GIẢI BÀI TOÁN HỆ THỨC LƯỢNG BẰNG PHƯƠNG PHÁP ĐẠI SỐ. I. Lý thuyết. II. Bài tập. VẤN ĐỀ 5 . BÀI TẬP VỀ HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG.
Chuyên đề hệ phương trình bậc nhất hai ẩn
Tài liệu gồm 77 trang, hướng dẫn giải các dạng toán chuyên đề hệ phương trình bậc nhất hai ẩn, giúp học sinh học tốt chương trình Đại số 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI I. PHƯƠNG PHÁP THẾ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp thế. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp thế. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4. Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. II. PHƯƠNG PHÁP CỘNG ĐẠI SỐ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp cộng đại số. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. SỬ DỤNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ. C. BÀI TẬP TRẮC NGHIỆM HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI
Chuyên đề hàm số bậc nhất và các bài toán liên quan
Tài liệu gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề hàm số bậc nhất và các bài toán liên quan, giúp học sinh học tốt chương trình Đại số 9 chương 2. 1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ. + Dạng toán 1. Tìm điều kiện xác định của hàm số. + Dạng toán 2. Tính giá trị hàm số khi cho giá trị của ẩn. + Dạng toán 3. Xác định điểm thuộc (không thuộc) đồ thị hàm số. + Dạng toán 4. Sự đồng biến, nghịch biến của hàm số. 2. HÀM SỐ BẬC NHẤT VÀ ĐỒ THỊ HÀM SỐ BẬC NHẤT. + Dạng toán 1. Hàm số bậc nhất. Sự đồng biến và nghịch biến của hàm số bậc nhất. + Dạng toán 2. Đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax. + Dạng toán 3. Đồ thị hàm số y = ax + b (a khác 0). + Dạng toán 4. Hệ số góc của đường thẳng. Đường thẳng song song và đường thẳng cắt nhau. 3. TỔNG HỢP MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN HÀM SỐ BẬC NHẤT TRONG CÁC ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN. 4. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.