Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 2 Toán 8 năm 2022 - 2023 trường Thực hành Sài Gòn - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra giữa học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kỳ 2 Toán 8 năm 2022 – 2023 trường Thực hành Sài Gòn – TP HCM : + Một xe máy khởi hành từ Hà Nội đi Hải Phòng. Cùng lúc đó, trên tuyến đường này, một ô tô xuất phát từ Hải Phòng đi Hà Nội với tốc độ lớn hơn tốc độ của xe máy 20 km/h. Hai xe gặp nhau sau khi mỗi xe đã đi được 1 giờ 12 phút. Tìm tốc độ xe máy, biết quãng đường Hà Nội – Hải Phòng dài 120 km. + Hai cảng biển tại A và B cách hòn đảo ở C lần lượt 8,4 km và 6,3 km. Hai con tàu xuất phát cùng lúc từ A và B đi đến C. Một lúc sau, hai tàu ở vị trí M và N, biết CM = 3,6 km và CN = 4,8 km (như hình bên). Chứng minh CMN đồng dạng CBA, từ đó tính khoảng cách MN giữa hai tàu biết rằng hai cảng biển nằm cách nhau 7 km. + Cho tam giác ABC nhọn có AB = 3cm, BC = 5cm. Trên cạnh BC lấy điểm H sao cho BH = 2cm. Đường thẳng qua H song song với đường thẳng AC, cắt cạnh AB tại I. a) Tính độ dài đoạn thẳng BI. b) Gọi M là trung điểm của đoạn thẳng AC và N là giao điểm của hai đường thẳng BM, IH. Chứng minh NH = NI, từ đó suy ra ba đường thẳng AH, BM và CI đồng quy.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 2019 trường chuyên Hà Nội Amsterdam
THCS. giới thiệu đến bạn đọc đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam, kỳ thi nhằm đánh giá chất lượng học tập môn Toán của học sinh lớp 8 sau từng giai đoạn cụ thể, để kiểm tra sự tiến bộ của các em, đồng thời có cơ sở để thực hiện quá trình dạy và học ở giai đoạn tiếp theo được tốt hơn. Đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam gồm 04 bài toán tự luận, đề thi có sự phân ban giữa lớp 8A với các lớp 8B, 8C, 8D, 8E. Trích dẫn đề kiểm tra giữa kỳ 2 Toán 8 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình: Một ô tô phải đi quãng đường AB dài 120 km trong thời gian nhất định. Ô tô đi nửa quãng đường đầu với vận tốc lớn hơn dự định là 5 km/h và đi nửa quãng đường sau với vận tốc kém dự định là 4 km/h. Biết ô tô đến B đúng thời gian dự định. Tính thời gian ô tô dự định đi quãng đường AB. [ads] + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. Gọi M và N lần lượt là hình chiếu vuông góc của D trên AC và CF. a) Chứng minh rằng: CF.CM = CE.CN. b) Gọi Q là hình chiếu vuông góc của D trên AB. Chứng minh rằng: QM // EF. c) Gọi P là hình chiếu vuông góc của D trên BE. Chứng minh rằng: bốn điểm M, N, P, Q thẳng hàng. + Cho các số thực không âm a, b, c thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: P = (ab + bc + ca – abc)/(a + 2b + c).