Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề chọn lọc nguyên hàm, tích phân và ứng dụng - Nguyễn Ngọc Dũng

Tài liệu gồm 88 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng (trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh), trình bày các khái niệm, tính chất và các dạng bài tập chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Giải tích chương 3. MỤC LỤC : CHƯƠNG 3 NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 3. Bài 1 Nguyên hàm 3. A Các khái niệm 3. B Tính chất 3. C Các dạng bài tập 3. + Dạng 1. Sử dụng bảng nguyên hàm 3. + Dạng 2. Nguyên hàm hàm phân thức 8. Bài 2 Tích phân 11. A Các khái niệm 11. B Tính chất 11. C Các dạng bài tập 11. + Dạng 1. Biến đổi và sử dụng bảng nguyên hàm 11. Bài 3 Phương pháp đổi biến 17. + Dạng 1. Nguyên hàm đổi biến loại 1 17. + Dạng 2. Nguyên hàm đổi biến loại 2 21. + Dạng 3. Tích phân đổi biến 24. Bài 4 Nguyên hàm, tích phân bằng phương pháp từng phân 33. + Dạng 1. Nguyên hàm từng phần 33. + Dạng 2. Tích phân từng phần 42. Bài 5 Ứng dụng của tích phân 48. + Dạng 1. Tính diện tích hình phẳng 48. + Dạng 2. Tính thể tích vật thể 56. Bài 6 Các dạng toán nâng cao 57. + Dạng 1. Các bài toán lý thuyết 57. + Dạng 2. Tích phân hàm ẩn 62. + Dạng 3. Tích phân hàm số cho bởi nhiều biểu thức 71. + Dạng 4. Ứng dụng tích phân giải các bài toán khảo sát hàm số 77.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Tích phân - Thầy Trần Đình Cư - TP Huế
Tài liệu gồm 110 trang tóm tắt lý thuyết, phân dạng và hướng dẫn giải các bài tập nguyên hàm, tích phân và ứng dụng. Các chuyên mục có trong chuyên đề tích phân của thầy Trần Đình Cư gồm có: A. Nguyên hàm B. Tích phân C. Phân loại và phương pháp tính tích phân – Vấn đề 1: Phép thay biến – Vấn đê 2: Tích phân bằng phương pháp lượng giác hóa – Vấn đề 3: Tích phân lượng giác – Vấn đề 4: Tích phân có chứa giá trị tuyệt đối – Vấn đề 5: Tích phân hàm hữu tỉ [ads] – Vấn đề 6: Tích phân một số hàm đặc biệt – Vấn đề 7: Tích phân từng phần – Vấn đề 8: Ứng dụng tích phân tính diện tích hình phẳng – Vấn đề 9: Tính thể tích vật thể tròn Một số bài tập cần làm trước khi thi Phương pháp đặt ẩn phụ không làm thay đổi cận tích phân Sai lầm thường gặp trong tính tích phân Đề thi đại học từ 2009-2012
Công cụ tính nguyên hàm trực tuyến
Tìm nguyên hàm trực tuyến theo chỉ dẫn bên dưới: + Bước 1: Mở trang công cụ tìm nguyên hàm trực tuyến tại đây . + Bước 2: Nhập hàm cần tính nguyên hàm vào khung tính theo dạng: int f(x) dx , trong đó f(x) là hàm cần tìm nguyên hàm. Ví dụ : Cần tìm nguyên hàm của hàm sinx ta nhập int sinx dx. Nhấn Enter để công cụ bắt đầu tính toán. Xem kết quả bên dưới ô tính. Cách nhập các hàm phức tạp: Để gõ các hàm phức tạp như hàm chưa lũy thừa, phân số, dấu căn … ta gõ theo ngôn ngữ Latex Toán học. Ví dụ : 1. Phân số a/b 2. Lũy thừa a^b 3. Căn bậc hai của a, ta nhập sqrt(a) 4. Căn bậc n của a, ta có thể nhập a^(1/n)
5 bài tập Tích phân dạng đặc biệt có lời giải - Trần Sĩ Tùng
Tài liệu chỉ gồm 2 trang với 5 bài toán tích phân dạng đặc biệt có lời giải chi tiết. Đây là dạng toán tích phân khá hay, được giải bằng cách các phương pháp độc đáo.
Phân dạng bài tập và lời giải chi tiết chuyên đề Tích phân - Lưu Huy Thưởng
Tài liệu gồm 120 trang tuyển chọn và giải chi tiết các toán tích phân, tài liệu do thầy Lưu Huy Thưởng biên soạn. Các nội dung trong tài liệu: PHẦN  I. TÍCH PHÂN CƠ BẢN PHẦN II. TÍCH PHẦN HÀM HỮU TỶ PHẦN III. TÍCH PHÂN HÀM SỐ VÔ TỶ PHẦN IV. TÍCH PHÂN HÀM LƯỢNG GIÁC PHẦN V. TÍCH PHÂN HÀM MŨ VÀ LOGARIT PHẦN VI. TỔNG HỢP PHẦN VII. TUYỂN TẬP MỘT SỐ ĐỀ THI THỬ PHẦN VIII. TÍCH PHÂN HÀM TRỊ TUYỆT ĐỐI. ỨNG DỤNG TÍCH PHÂN [ads]