Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2

Nội dung Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Để giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2020 môn Toán, thầy giáo Lê Văn Đoàn đã biên soạn một tài liệu hướng dẫn giải và phát triển các bài toán vận dụng cao (VDC) trong đề minh họa. Tài liệu này bao gồm 51 trang, tập trung vào việc giải và phát triển các bài toán từ câu 46 đến câu 50. Cụ thể, tài liệu bao gồm các dạng toán như: Câu 46: Tìm số nghiệm của phương trình liên quan đến sinx khi có bảng biến thiên Biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị hàm f(x) Bài toán kết hợp giữa hàm số và tích phân Bài toán chứa tham số m trong bài toán chứa hàm cụ thể Câu 47: Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào mũ – logarit Bài toán dồn biến, rồi sử dụng bất đẳng thức Cauchy hoặc khảo sát hàm một biến Sử dụng f(u) = f(v) hoặc f(u) > f(v) hoặc f(u) < f(v) khi hai gặp hai hàm khác loại Câu 48: Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn Bài toán chứa tham số trong hàm cụ thể Bài toán max – min khi đề cho đồ thị hoặc bảng biến thiên Giá trị lớn nhất và nhỏ nhất của hàm trị tuyệt đối Câu 49: Thể tích khối đa diện cắt ra từ một khối khác Câu 50: Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình logarit chứa hai ẩn Đây là những dạng toán phức tạp và đòi hỏi một sự am hiểu sâu sắc về lý thuyết và kỹ năng giải toán của học sinh. Hy vọng tài liệu này sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương
Nội dung Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương Bản PDF - Nội dung bài viết Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Trong tài liệu này, Nguyễn Đại Dương đã tổng hợp cách giải các dạng toán nâng cao có khả năng xuất hiện trong câu điểm 9 của đề thi THPT Quốc gia môn Toán. Tài liệu gồm 23 trang, trình bày chi tiết và cụ thể về cách giải các bài toán phức tạp mà thường xuất hiện trong phần điểm cao của đề thi. Theo Nguyễn Đại Dương, xu hướng mới của đề thi Toán THPT Quốc gia là các bài toán câu điểm 9 dần chuyển sang các dạng khác, không chỉ xoay quanh Phương trình – Bất phương trình – Hệ phương trình như trước. Các dạng bài toán có khả năng xuất hiện theo ưu tiên sẽ bao gồm: Phương trình – Bất phương trình chứa tham số. Phương trình – Bất phương trình chứa Mũ và Logarit. Bài toán thực tế. Với tài liệu này, Nguyễn Đại Dương hi vọng rằng các học sinh sẽ trang bị cho mình kiến thức và kỹ năng giải quyết các dạng bài toán này. Nếu gặp phải trong phòng thi, các em sẽ có đủ kiến thức và tự tin để giải quyết. Đây là một tài liệu hữu ích và cần thiết để chuẩn bị tốt cho kỳ thi quan trọng.
Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook
Nội dung Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook Bản PDF - Nội dung bài viết Tài liệu học Toán tinh túy từ Lovebook Tài liệu học Toán tinh túy từ Lovebook Tài liệu "Chắt lọc tinh túy của 3 câu phân loại trong các đề thi thử THPT Quốc gia môn Toán" từ Lovebook là một bộ tài liệu giúp học sinh luyện thi hiệu quả. Cuốn sách này đã sắp xếp các bài giảng một cách logic, phù hợp cho việc ôn tập trong một tháng. Đáng chú ý ở đây là sự tập trung vào các bài tập phân loại, so sánh và phân tích sâu vấn đề.
Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh
Nội dung Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Bản PDF - Nội dung bài viết Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Tài liệu "Kỹ thuật CASIO luyện thi THPT Quốc gia" do tác giả Lâm Hữu Minh biên soạn gồm 122 trang hướng dẫn sử dụng Casio để giải các dạng toán trong đề thi THPT Quốc gia. Kỹ thuật CASIO được áp dụng một cách sáng tạo và khác biệt so với cách dùng máy tính thông thường. Các phương pháp sử dụng máy tính Casio trong tài liệu này không chỉ giúp người học nhanh chóng và hiệu quả khi giải các bài toán mà còn phát triển sự linh hoạt, sáng tạo và tăng tốc độ xử lý vấn đề. Kỹ thuật CASIO hướng đến mục tiêu luyện cho người học sự dẻo tay, nhanh nhạy khi sử dụng máy tính Casio để giải toán. Đồng thời, tài liệu cũng cung cấp những phương pháp bấm máy hiệu quả, tránh những thao tác không cần thiết và giúp tối ưu hóa quá trình giải toán. Tuy đề thi ngày càng đòi hỏi tư duy và suy luận cao, nhưng việc học Kỹ thuật CASIO sẽ giúp người học vững chắc trong việc sử dụng máy tính Casio trong kỳ thi THPT Quốc gia. Việc thành thạo Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học sẽ tạo nên sự tự tin và khả năng giải quyết vấn đề hiệu quả cho người học khi tham gia kỳ thi. Không chỉ giúp cải thiện kỹ năng sử dụng máy tính Casio mà còn khuyến khích sự sáng tạo và nghiên cứu trong việc giải các bài toán. Từ đó, người học có thể mở rộng và áp dụng Kỹ thuật CASIO vào các môn học khác.
Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Nội dung Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán Bản PDF - Nội dung bài viết Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh đã tạo ra một tài liệu đầy ý nghĩa và hữu ích dành cho những ai đang chuẩn bị cho kỳ thi Đại học môn Toán. Tài liệu này được scan từ sách gốc, có tổng cộng 271 trang, chứa đựng những kiến thức quý báu và kinh nghiệm thực tiễn trong việc giải các bài toán trong đề thi quốc gia hiện nay. Bằng việc nghiên cứu tài liệu này, bạn đọc sẽ được hướng dẫn cách trình bày bài toán một cách logic và hiệu quả, từ đó nâng cao khả năng làm bài thi của mình. Tác giả hy vọng rằng tài liệu sẽ giúp ích cho các thí sinh trong quá trình ôn tập và tự tin hơn khi đối diện với các bài toán khó khăn trong kỳ thi Đại học môn Toán.