Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2023 2024 trường THPT chuyên ĐH Vinh Nghệ An

Nội dung Đề tuyển sinh môn Toán năm 2023 2024 trường THPT chuyên ĐH Vinh Nghệ An Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2023 - 2024 trường THPT chuyên ĐH Vinh Nghệ An Đề thi tuyển sinh môn Toán năm 2023 - 2024 trường THPT chuyên ĐH Vinh Nghệ An Cảm ơn mọi người đã quan tâm đến Đề thi tuyển sinh môn Toán năm học 2023-2024 của trường THPT chuyên Đại học Vinh, Nghệ An. Trong đề thi này, chúng ta sẽ cùng tìm hiểu và giải quyết các bài toán thú vị sau đây. 1. Bài toán đầu tiên liên quan đến đa thức P(x) = x2 + bx + c. Hãy tìm các hệ số b, c sao cho đa thức này có hai nghiệm nguyên và |c| < 16 và |P(9)| là số nguyên tố. 2. Bài toán thứ hai xoay quanh đường tròn (O) có đường kính AB. Chúng ta cần chứng minh rằng tứ giác CDNM là tứ giác nội tiếp, và sau đó tìm vị trí của đoạn thẳng BT sao cho độ dài nhỏ nhất. 3. Cuối cùng, bài toán thứ ba liên quan đến tập hợp số tự nhiên M có 2 chữ số khác nhau. Hãy tìm số nguyên dương k lớn nhất sao cho tồn tại tập hợp con A có k phần tử thuộc tập hợp M sao cho tích của các số trong A đều chia hết cho 3. Chúc các bạn học sinh giải quyết thành công các bài toán thú vị này và đạt kết quả cao trong kỳ thi tuyển sinh sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol 2 (P): y = 2x^2 và đường thẳng (d): y = ax + b. a) Tìm điều kiện của b sao cho với mọi số thực a, parabol (P) luôn cắt đường thẳng (d) tại hai điểm phân biệt. b) Gọi A là giao điểm của (P) và (d) có hoành độ bằng 1, B là giao điểm của (d) và trục tung. [ads] Biết rằng tam giác OAB có diện tích bằng 2, tìm a và b. + Tìm tất cả các số nguyên x, y, z không âm thỏa mãn xyz + xy  + yz + zx + x + y + z = 2017. + Bên trong hình vuông cạnh bằng 1, lấy 9 điểm phân biệt tùy ý sao cho không có bất kỳ 3 điểm nào trong chúng thẳng hàng. Chứng minh rằng tồn tại 3 điểm trong số đó tạo thành một tam giác có diện tích không vượt quá 1/8.
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 – 2018 môn Toán sở GD và ĐT Bến Tre gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình x^2 – 2(m – 1)x – (2m + 1) = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = – 2x^2 và đường thẳng (d): y = 2x – 4 a) Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ b) Bằng phương pháp đại số, hãy tìm tọa độ giao điểm của (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường TH Cao Nguyên – Đắk Lắk gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn tâm O, từ A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của OA và BC. a. Chứng minh tứ giác ABOC nội tiếp. b. Chứng minh BA.BE = AE.BO. c. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt tia AB và AC theo thứ tự tại D và F. Chứng minh góc IDO và góc BCO bằng nhau và tam giác DOF cân. + Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Chứng minh rằng MK + ML = MH .
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).