Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Mở đầu hình học giải tích không gian Oxyz

Ebook Mở đầu hình học giải tích không gian Oxyz gồm 411 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh và nhóm tác giả Chinh phục Olympic Toán, mang tới cho bạn đọc cái nhìn khái quát và cơ bản nhất về chủ đề hình học Giải tích không gian Oxyz, thông qua các lý thuyết cơ bản và ví dụ minh họa kèm lời giải chi tiết. Tài liệu giúp các em học sinh lớp 12 học tốt chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian và ôn thi tốt nghiệp THPT môn Toán. Chương 1 . Mở đầu hình học tọa độ không gian. + Dạng 1. Tìm tọa độ của vectơ, của điểm. + Dạng 2. Tích vô hướng của hai vectơ và ứng dụng. + Dạng 3. Vận dụng công thức trung điểm và trọng tâm. + Dạng 4. Chứng minh hai vectơ cùng phương, không cùng phương. + Dạng 5. Tích có hướng của hai vectơ và ứng dụng. Chương 2 . Lý thuyết về phương trình đường thẳng. + Dạng 1. Viết phương trình đường thẳng đi qua hai điểm phân biệt. + Dạng 2. Đường thẳng Δ đi qua điểm M và song song với đường thẳng d. + Dạng 3. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 không cùng phương. + Dạng 5. Viết phương trình đường thẳng Δ  đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). + Dạng 6. Viết phương trình đường thẳng Δ đi qua điểm A và song song với hai mặt phẳng cắt nhau (α), (β). + Dạng 7. Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β). + Dạng 8. Viết phương trình đường thẳng Δ đi qua điểm A và cắt hai đường thẳng d1, d2 không chứa A. + Dạng 9. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1, d2. + Dạng 10. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc và cắt d. + Dạng 11. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với d1 và cắt d2, với A không thuộc d2. + Dạng 12. Viết phương trình đường thẳng Δ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). + Dạng 13. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. + Dạng 14. Viết phương trình đường thẳng Δ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (d không vuông góc với (α)). + Dạng 15. Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. + Dạng 16. Viết phương trình đường thẳng Δ song song với đường thẳng d và cắt cả hai đường thẳng d1, d2. + Dạng 17. Viết phương trình đường thẳng Δ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. + Dạng 18. Viết phương trình Δ là hình chiếu vuông góc của d lên mặt phẳng (α). + Dạng 19. Viết phương trình Δ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. [ads] Chương 3 . Các bài toán về phương trình mặt phẳng. + Dạng 1. Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và song song với một mặt phẳng. + Dạng 3. Viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. + Dạng 5. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β). + Dạng 6. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 7. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ và Δ’ chéo nhau). + Dạng 8. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và điểm M. + Dạng 9. Viết phương trình mặt phẳng chứa hai đường thẳng cắt nhau. + Dạng 10. Viết phương trình mặt phẳng chứa hai đường thẳng song song. + Dạng 11. Viết phương trình mặt phẳng đi qua một điểm và song song với hai đường thẳng chéo nhau. + Dạng 12. Viết phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cho trước. + Dạng 13. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k. + Dạng 14. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách điểm M một khoảng k. + Dạng 15. Viết phương trình mặt phẳng tiếp xúc với mặt cầu. Chương 4 . Các bài toán về phương trình mặt cầu. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và tiếp xúc. Chương 5 . Các bài toán cực trị trong hình học không gian Oxyz. + Dạng 1. Cho hai điểm A, B, mặt phẳng (P) và đường thẳng d. Tìm tọa độ điểm M thuộc (P) sao cho chu vi tam giác MAB nhỏ nhất. Tìm tọa độ điểm M thuộc d sao cho chu vi tam giác MAB nhỏ nhất. + Dạng 2. Cho hai điểm A, B và đường thẳng (d). Tìm trên (d) điểm M để: MA^2 + MB^2 đạt giá trị nhỏ nhất; |MA + MB| đạt giá trị nhỏ nhất; tam giác MAB có diện tích nhỏ nhất. + Dạng 3. Cho điểm A và đường thẳng (d). Viết phương trình mặt phẳng (Q) chứa (d) có d(A;(Q)) lớn nhất, nhỏ nhất. + Dạng 4. Cho hai đường thẳng d và d’. Viết phương trình mặt phẳng (P) chứa d và tạo với đường thẳng d’ một góc lớn nhất. + Dạng 5. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng lớn nhất. + Dạng 6. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng nhỏ nhất. + Dạng 7. Tìm M sao cho P = a1MA1^2 + . . . + anMAn^2 nhỏ nhất / lớn nhất. + Dạng 8. Cho mặt cầu (S) và mặt phẳng (α). Tìm điểm M trên mặt cầu sao cho khoảng cách từ nó đến mặt cầu đạt giá trị lớn nhất hoặc giá trị nhỏ nhất. + Dạng 9. Cho mặt cầu (S) và đường thẳng (d). Tìm điểm M trên mặt cầu (S) sao cho khoảng cách từ nó đến đường thẳng d đạt giá trị lớn nhất hoặc đạt giá trị nhỏ nhất? Chương 6 . Phương pháp tọa độ hóa hình cổ điển.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng phương pháp tọa độ để giải bài toán hình học không gian - Cao Văn Tuấn
Các em học sinh nên nhớ rằng “Không có phương pháp giải nào là vạn năng”, do đó các em phải không ngừng luyện tập để tạo ra sợi dây liên kết giữa các phần kiến thức của mình, khi đó các em mới có thể vận dụng linh hoạt các phương pháp sao cho bài giải của mình khoa học nhất, hay nhất. Đối với một số loại hình chóp, hình lăng trụ trong một số bài toán ta có thể sử dụng việc đặt một hệ trục tọa độ thích hợp, để chuyển từ việc giải hình học không gian tổng hợp thuần túy (mà việc này có thể gặp nhiều khó khăn trong dựng hình, tính toán với các em học sinh) sang việc tính toán dựa vào tọa độ. Cách giải bài toán như vậy gọi là phương pháp tọa độ hóa. Đối với phương pháp tọa độ hóa, việc tính toán có thể sẽ dài dòng và phức tạp hơn phương pháp hình học không gian thuần túy, tuy nhiên cách giải này thực sự rất hữu ích cho nhiều bạn học sinh mà việc nắm vững những phương pháp trong cách giải hình học không gian còn yếu hoặc những bài toán hình không gian về khoảng cách khó; về xác định GTLN, GTNN; các bài toán về quỹ tích điểm … Để có thể làn tốt được các bài toán giải bằng phương pháp tọa độ hóa thì các em học sinh phải nắm chắc các kiến thức (cụ thể là các công thức tính) của phần “Phương pháp tọa độ trong không gian” và những kiến thức cơ bản nhất của hình học không gian. [ads] Sau đây thầy sẽ trình bày cụ thể phương pháp Ứng dụng phương pháp tọa độ để giải toán hình học không gian: + Bước 1: Chọn hệ trục tọa độ Oxyz trong không gian: Vì Ox, Oy, Oz vuông góc với nhau từng đôi một nên nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. + Bước 2: Suy ra tọa độ của các đỉnh, điểm trên hệ trục tọa độ vừa ghép. + Bước 3: Sử dụng các kiến thức về tọa độ không gian để giải quyết bài toán. Đối với các công thức tính về vector, ta có thể sử dụng máy tính Casio để tăng tốc độ tính toán. Các em lưu ý rằng chúng ta có thể tọa độ hóa một khối đa diện bất kỳ. Chỉ cần chúng ta xác định được đường cao của khối đa diện đó và thông thường trên lý thuyết ta đều đặt gốc tọa độ là chân đường cao của khối đa diện; trục cao (trục Oz) là đường cao, sau đó ta dựng hai tia còn lại. Nhưng trong thực hành giải toán chúng ta căn cứ tùy bài toán để đặt hệ trục miễn sao chúng ta có thể tìm các tọa độ các đỉnh liên quan đến hình khối cần tính có thể tìm được một cách dễ dàng hoặc không quá phức tạp.
Giải bài toán hình học không gian bằng phương pháp tọa độ - Trần Đình Cư
Tài liệu gồm 37 trang với 46 bài toán thuộc chuyên đề phương pháp tọa độ trong không gian được phân tích và giải chi tiết, tài liệu do thầy Trần Đình Cư biên soạn. Trích dẫn tài liệu : + Cho hình lăng trụ đứng ABC.A’B’C’, đáy ABC là tam giác vuông tại A, AB = a, AC = 2a, AA’ = b. Gọi M, N lần lượt là trung điểm của BB’ và AB. a. Tính theo a và b thể tích của tứ diện A’CMN b. Tính tỉ số b/a để B’C ⊥ AC’ [ads] + Cho khối lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, DD’. a. Tính góc giữa hai đường thẳng AC’ và A’B. b. Chứng minh AC’ ⊥ (MNP) và tính thể tích của khối tứ diện AMNP. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi M, N, P lần lượt là trung điểm của SB, BC, CD. Chứng minh rằng AM ⊥ BP và tính thể tích của khối tứ diện CMNP.
Ứng dụng phương pháp tọa độ để giải các bài toán hình học không gian
Tài liệu cung cấp cách gắn hệ trục tọa độ Oxyz vào các khối đa diện thường gặp. Các ví dụ minh họa điển hình kèm theo giải thích chi tiết sẽ giúp bạn đọc nắm kĩ hơn về kĩ thuật tọa độ hóa. Bước 1 . Chọn hệ trục tọa độ Oxyz trong không gian Ta có: Ox, Oy, Oz vuông góc với nhau từng đôi một. Do đó, nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. Cụ thể: Với hình lập phương hoặc hình hộp chữ nhật ABCD.A’B’C’D’ Với hình lập phương Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; a; 0); D(0; a; 0) A’(0; 0; a); B’(a; 0; a); C’(a; a; 0); D’(0; a; a) Với hình hộp chữ nhật Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; b; 0); D(0; b; 0) A’(0; 0; c); B’(a; 0; c); C’(a; b; c); D’(0; b; c) Với hình hộp đáy là hình thoi ABCD.A’B’C’D’ Chọn hệ trục tọa độ sao cho: + Gốc tọa độ trùng với giao điểm O của hai đường chéo của hình thoi ABCD + Trục Oz đi qua 2 tâm của 2 đáy [ads] Với hình chóp tứ giác đều S.ABCD Với hình chóp tam giác đều S.ABC Với hình chóp S.ABCD có ABCD là hình chữ nhật và SA ⊥ (ABCD) Với hình chóp S.ABC có ABCD là hình thoi và SA ⊥ (ABCD) Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại A Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại B Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại C Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại A Bước 2 . Sử dụng các kiến thức về tọa độ để giải quyết bài toán Các dạng câu hỏi thường gặp: Khoảng cách, góc, diện tích thiết diện, thể tích khối đa diện Một số kiến thức Hình học bổ sung Bài tập vận dụng
Phương pháp tọa độ hóa để giải bài toán hình học không gian - Nguyễn Hồng Điệp
Tài liệu gồm 16 trang hướng dẫn phương pháp tọa độ hóa để giải các bài toán hình học không gian, tài liệu do thầy Nguyễn Hồng Điệp biên soạn. Nội dung tài liệu : 1. Các công thức 2. Xác định tọa độ điểm 3. Cách chọn hệ trục tọa độ – chọn véctơ + Chọn véctơ Đối với dạng bài tập này khi tìm véctơ chỉ phương, véctơ pháp tuyến của đường thẳng và mặt phẳng ta sẽ gặp trường hợp véctơ chứa tham số a là độ dài cạnh. Khi đó, để tiện cho việc tính toán ta chọn lại véctơ chỉ phương, véctơ pháp tuyến mất tham số a. [ads] + Chọn hệ trục tọa độ Phần quan trọng nhất của phương pháp này là cách chọn hệ trục tọa độ. Không có phương pháp tổng quát, có nhiều hệ trục tọa độ có thể được chọn, chúng ta chọn sao cho việc tìm tọa độ các điểm có nhiều số 0 càng tốt. • Hệ trục tọa độ nằm trên 3 đường thẳng đôi 1 vuông góc nhau. • Gốc tọa độ thường là chân đường cao của hình chóp, hình lăng trụ trùng với đỉnh của hình vuông, hình chữ nhật, tam giác vuông hoặc có thể là trung điểm của cạnh nào đó. 4. Các ví dụ