Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương

Nội dung Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Thông báo: Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương Thông báo: Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Bình Dương. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 03 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề tuyển sinh: Cho phương trình \(x^2 - 2mx + m - 2 = 0\) (trong đó \(m\) là tham số). a) Tìm tất cả các giá trị \(m\) để phương trình có hai nghiệm phân biệt dương. b) Gọi \(x_1\) và \(x_2\) là các nghiệm của phương trình. Hãy tìm \(m\) sao cho biểu thức \(M\) đạt giá trị nhỏ nhất. Chứng minh rằng: \(A = a^7 - a\) chia hết cho 7 với mọi \(a \in \mathbb{Z}\). Cho tam giác nhọn \(ABC\) (với \(AB < AC\)) nội tiếp đường tròn \((O)\) và \(M\) là trung điểm của \(BC\). \(BE\) và \(CF\) lần lượt là các đường cao (với \(E\) và \(F\) là chân các đường cao). Tiếp tuyến với đường tròn \((O)\) tại \(B\) và \(C\) cắt nhau tại \(S\). Gọi \(N\) và \(P\) lần lượt là giao điểm của \(BS\) với \(EF\) và \(AS\) với \((O)\) (\(P\) khác \(A\)). Chứng minh rằng: a) \(MN\) vuông góc \(BF\). b) \(AB \cdot CP = AC \cdot BP\). c) \(\angle CAM = \angle BAP\). Chúc quý thầy cô và các em học sinh thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol 2 (P): y = 2x^2 và đường thẳng (d): y = ax + b. a) Tìm điều kiện của b sao cho với mọi số thực a, parabol (P) luôn cắt đường thẳng (d) tại hai điểm phân biệt. b) Gọi A là giao điểm của (P) và (d) có hoành độ bằng 1, B là giao điểm của (d) và trục tung. [ads] Biết rằng tam giác OAB có diện tích bằng 2, tìm a và b. + Tìm tất cả các số nguyên x, y, z không âm thỏa mãn xyz + xy  + yz + zx + x + y + z = 2017. + Bên trong hình vuông cạnh bằng 1, lấy 9 điểm phân biệt tùy ý sao cho không có bất kỳ 3 điểm nào trong chúng thẳng hàng. Chứng minh rằng tồn tại 3 điểm trong số đó tạo thành một tam giác có diện tích không vượt quá 1/8.
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 – 2018 môn Toán sở GD và ĐT Bến Tre gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình x^2 – 2(m – 1)x – (2m + 1) = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = – 2x^2 và đường thẳng (d): y = 2x – 4 a) Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ b) Bằng phương pháp đại số, hãy tìm tọa độ giao điểm của (P) và (d)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường TH Cao Nguyên – Đắk Lắk gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn tâm O, từ A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của OA và BC. a. Chứng minh tứ giác ABOC nội tiếp. b. Chứng minh BA.BE = AE.BO. c. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt tia AB và AC theo thứ tự tại D và F. Chứng minh góc IDO và góc BCO bằng nhau và tam giác DOF cân. + Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Chứng minh rằng MK + ML = MH .
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).