Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn

Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết A. Tóm tắt lý thuyếtB. Bài tập và các dạng toán Tài liệu học Toán lớp 9 - Hệ hai phương trình bậc nhất hai ẩn Tài liệu này gồm 11 trang, cung cấp kiến thức cơ bản, các dạng toán và bài tập liên quan đến chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Mỗi bài toán được kèm theo đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết 1. Khái niệm về hệ phương trình bậc nhất hai ẩn Hệ phương trình bậc nhất hai ẩn có dạng ax + by = c và a'x + b'y = c'. Trong đó, a, b, a', b' là các số thực và x, y là các ẩn. Nếu hai phương trình có nghiệm chung (x, y), thì (x, y) được gọi là nghiệm của hệ phương trình. Nếu không có nghiệm chung, hệ phương trình sẽ là vô nghiệm. Giải hệ phương trình là tìm tất cả các nghiệm của hệ đó. 2. Minh họa hình học của tập nghiệm của hệ phương trình bậc nhất hai ẩn Tập nghiệm của hệ phương trình được biểu diễn bởi các điểm chung của hai đường thẳng. Nếu hai đường thẳng cắt nhau, hệ phương trình có một nghiệm duy nhất. Nếu hai đường thẳng song song, hệ phương trình sẽ vô nghiệm. Nếu hai đường thẳng trùng nhau, hệ phương trình sẽ có vô số nghiệm. 3. Tổng quát về hệ phương trình bậc nhất hai ẩn Hệ phương trình có nghiệm duy nhất khi hệ số không bằng nhau. Hệ phương trình vô nghiệm khi hệ số bằng nhau nhưng hệ số tự do không bằng nhau. Hệ phương trình có vô số nghiệm khi hệ số và hệ số tự do đều bằng nhau. 4. Hệ phương trình tương đương Hai hệ phương trình được xem là tương đương nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán Dạng 1: Dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn Giúp học sinh xác định số nghiệm có thể của hệ phương trình dựa vào các hệ số. Dạng 2: Kiểm tra một cặp số có phải là nghiệm của hệ phương trình hay không Gợi ý cách xác định xem một cặp số có phải là nghiệm của hệ phương trình hay không. Dạng 3: Giải hệ phương trình bằng phương pháp đồ thị Hướng dẫn vẽ đồ thị của hai đường thẳng và xác định nghiệm của hệ phương trình từ đó. Bài tập trắc nghiệm và bài tập về nhà cũng được cung cấp để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình. Tài liệu còn được cung cấp dưới dạng file Word để giáo viên dễ dàng sử dụng trong quá trình giảng dạy.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề hàm số và đồ thị hàm số y ax2 (a khác 0)
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Các kiến thức cần nhớ. 1. Tính chất của hàm số 2 y ax a 0. – Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. – Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nhận xét: – Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Giá trị nhỏ nhất của y bằng 0. – Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Giá trị lớn nhất của y bằng 0. 2. Đồ thị của hàm số 2 y ax a 0. Đồ thị của hàm số 2 y ax a 0 là một đường cong luôn đi qua gốc tọa độ và nhận Oy làm trục đối xứng. Đường cong được gọi là Parabol với đỉnh O. – Nếu a > 0 thì (P) nằm phía trên trục hoành và O là điểm thấp nhất. – Nếu a < 0 thì (P) nằm phía dưới trục hoành và O là điểm cao nhất. B. Bài tập áp dụng. + Dạng 1: Tính giá trị của hàm số tại một điểm cho trước. + Dạng 2: Xét tính đồng biến, nghịch biến của hàm số. + Dạng 3: Vẽ đồ thị hàm số y = ax2 (a khác 0). + Dạng 4: Sự tương giao giữa (P) và (d). BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề công thức nghiệm của phương trình bậc hai
Tài liệu gồm 28 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề công thức nghiệm của phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Kiến thức cần nhớ. 1. Phương trình bậc hai một ẩn. – Phương trình bậc hai một ẩn (hay còn gọi là phương trình bậc hai) là phương trình có dạng: 2 ax bx c a trong đó abc là các số thực cho trước và x là ẩn số. – Giải phương trình bậc hai một ẩn là đi tìm tập nghiệm của phương trình bậc hai một ẩn đó. 2. Công thức nghiệm của phương trình bậc hai. Xét phương trình bậc hai 2 ax bx c a 0 0 và biệt thức 2 ∆ b ac 4. – Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm. – Trường hợp 2: Nếu ∆ = 0 thì phương trình có nghiệm kép. – Trường hợp 3: Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt. 3. Công thức nghiệm thu gọn của phương trình bậc hai. Xét phương trình bậc hai 2 ax bx c a 0 với b b 2. Gọi biệt thức 2 ∆ b ac. – Trường hợp 1: Nếu ∆ < 0 thì phương trình vô nghiệm. – Trường hợp 2: Nếu ∆ = 0 thì phương trình có nghiệm kép: 1 2 b x x a. – Trường hợp 3: Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt: 1 2 b x a. Chú ý: Trong trường hợp hệ số b có dạng 2 b ta nên sử dụng ∆’ để giải phương trình sẽ cho lời giải ngắn gọn hơn. Nếu a c trái dấu thì phương trình luôn có hai nghiệm phân biệt. B. Bài tập và các dạng toán. + Dạng 1: Không dùng công thức nghiệm, giải phương trình bậc hai một ẩn cho trước. + Dạng 2: Giải phương trình bậc hai bằng cách sử dụng công thức nghiệm, công thức nghiệm thu gọn. + Dạng 3: Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. + Dạng 4: Giải và biện luận phương trình dạng bậc hai. + Dạng 5: Dạng toán liên quan đến tính có nghiệm của phương trình bậc hai, nghiệm chung của phương trình bậc hai. + Dạng 6: Chứng minh phương trình bậc hai có nghiệm, vô nghiệm. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 36 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Hệ thức Viét. 2. Ứng dụng của hệ thức Viét. B. Bài tập. Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. Dạng 3: Tìm hai số khi biết tổng và tích. Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. Dạng 6: Tìm GTLN – GTNN của biểu thức. Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề phương trình quy về phương trình bậc hai
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình quy về phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Phương trình trùng phương: Phương trình trùng phương là phương trình có dạng: 4 2 ax bx c a 0. Cách giải: Đặt ẩn phụ 2 t xt 0 để đưa phương trình về phương trình bậc hai: 2 at bt c a 0. 2. Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức ta làm theo các bước sau: + Bước 1: Tìm điều kiện xác định của ẩn của phương trình. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được ở bước 2. + Bước 4: So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. 3. Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có thể thực hiện theo các bước sau: + Bước 1: Phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. B. Bài tập và các dạng toán. I. Phương trình không chứa tham số. + Dạng 1: Giải phương trình trùng phương. + Dạng 2: Phương trình chứa ẩn ở mẫu thức. + Dạng 3: Phương trình đưa về dạng tích. + Dạng 4: Giải bằng phương pháp đặt ẩn phụ. + Dạng 5: Phương trình chứa căn thức. + Dạng 6: Một số dạng khác. II. Phương trình chứa tham số. + Dạng 1: Phương trình bậc ba đưa được về dạng tích 2 x k ax bx c 0. + Dạng 2: Phương trình trùng phương. BÀI TẬP VỀ NHÀ.