Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 10 năm 2023 - 2024 trường THPT Bình Minh - Vĩnh Long

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra định kì cuối học kỳ 1 môn Toán 10 năm học 2023 – 2024 trường THPT Bình Minh, tỉnh Vĩnh Long; đề thi có đáp án trắc nghiệm mã đề 185 – 246 – 390 – 482. Trích dẫn Đề học kỳ 1 Toán 10 năm 2023 – 2024 trường THPT Bình Minh – Vĩnh Long : + Một xưởng sản xuất đồ gỗ mỹ nghệ sản suất ra hai loại sản phẩm I và II. Mỗi bộ sản phẩm loại I lãi 5 triệu đồng, mỗi bộ sản phẩm loại II lãi 4 triệu đồng. Để sản suất mỗi bộ sản phẩm loại I cần máy làm việc trong 3 giờ và nhân công làm việc trong 2 giờ. Để sản suất mỗi bộ sản phẩm loại II cần máy làm việc trong 3 giờ và nhân công làm việc trong 1 giờ. Biết rằng chỉ dùng máy hoặc chỉ dùng nhân công không thể đồng thời làm hai loại sản phẩm cùng lúc, số nhân công luôn ổn định. Một ngày máy làm việc không quá 15 giờ, nhân công làm việc không quá 8 giờ. Hỏi một ngày tiền lãi lớn nhất bằng bao nhiêu? A. 25 triệu đồng. B. 20 triệu đồng. C. 23 triệu đồng. D. 24 triệu đồng. + Lúc 7 giờ sáng, một tàu cao tốc xuất phát từ vị trí A tại thành phố Rạch Giá đến vị trí B thuộc đảo Hòn Sơn. Tại B, tàu thực hiện dừng đón, trả khách trong 30 phút. Ngay sau đó, tàu tiếp tục di chuyển đến điểm C thuộc Cảng Bãi Vòng (Phú Quốc). Biết rằng tốc độ trung bình của tàu trên đoạn AB là 45 km/h, trên đoạn BC là 50 km/h và AC = 120 km, BAC = 30°, BCA = 20° (tham khảo hình vẽ). Hỏi tàu đến vị trí C lúc gần mấy giờ nhất? + Ông X định lát gạch tổ ong trên mảnh đất hình tứ giác ABCD như mô hình bên cạnh. Biết rằng AB m BC CD m ABC BCD 6 4 100 120 và giá lát gạch là: 200.000 đồng/m2. Hỏi ông X cần ít nhất bao nhiêu tiền để lát gạch cả mảnh đất đó (Chọn kết quả gần nhất)?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán (chuyên Toán) năm 2020 2021 trường chuyên Nguyễn Huệ Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán (chuyên Toán) năm 2020 2021 trường chuyên Nguyễn Huệ Hà Nội Bản PDF Đề thi HK1 Toán lớp 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.
Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định Bản PDF Đề thi HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có các đường cao AH, BE, CF. Tiếp tuyến tại B và C của (O) cắt nhau tại T. Gọi D là giao điểm của AT và BC, S là giao điểm của EF và BC, G là hình chiếu vuông góc của T trên AO, J là giao điểm thứ hai của TH và đường tròn ngoại tiếp tam giác OBC. Chứng minh: a) Các điểm S, J, M, T cùng thuộc một đường tròn, với M là trung điểm của BC. b) Các đường thẳng SO, TH, DG đồng quy tại một điểm. + Tìm số dư khi chia 11^12 + 12^13 + 13^14 cho 7. + Cho p là số nguyên tố và a, b là các số nguyên dương lẻ thỏa mãn a – b chia hết cho p – 1 và a + b chia hết cho p. Chứng minh a^b + b^a chia hết cho p.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-5;0), B(1;0), C(2;3). a) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC. b) Tìm tọa độ điểm M thuộc tia Oy sao cho |2MA – MB| nhỏ nhất. + Tìm giá trị lớn nhất của hàm số y = f(x) = x(3 – 2x) khi 0 =< x =< 3/2. + Giải các phương trình và hệ phương trình sau.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường chuyên Lê Hồng Phong TP HCM Bản PDF Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC biết A(2;1), B(1;2), C(4;3). a) Chứng minh ABC là tam giác vuông cân. b) Tìm giao điểm của đường thẳng AB và trục tung. c) Tìm tọa độ điểm D sao cho ABCD là hình thang có AD // BC và diện tích ABCD bằng 15. + Cho hình vuông ABCD cạnh a, gọi I là giao điểm của AC và BD. M là điểm thỏa MA2 + MB2 + MC2 + MD2 = 12a2, tính MI. + Cho phương trình (2x^2 – 8x + m)/(x^2 – 4x + 3) = 1. Tìm tất cả các giá trị của tham số m để phương trình có nghiệm.