Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Võ Nguyên Giáp Quảng Bình

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Võ Nguyên Giáp Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 10 THPT năm học 2022 – 2023 trường THPT chuyên Võ Nguyên Giáp, tỉnh Quảng Bình; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn Đề cuối kì 1 Toán lớp 10 năm 2022 – 2023 trường chuyên Võ Nguyên Giáp – Quảng Bình : + Phủ định của mệnh đề “Tất cả học sinh lớp 10 đều thích cầu thủ Lionel Messi” là mệnh đề nào? A. “Tất cả học sinh lớp 10 đều không thích cầu thủ Lionel Messi”. B. “Có học sinh lớp 10 không thích cầu thủ Lionel Messi”. C. “Chỉ có ít học sinh lớp 10 thích cầu thủ Lionel Messi”. D. “Có nhiều học sinh lớp 10 thích cầu thủ Lionel Messi”. + Sử dụng thuật ngữ “điều kiện đủ” để phát biểu định lý “Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau”. A. Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau. B. Hai tam giác có diện tích bằng nhau là điều kiện đủ để hai tam giác đó bằng nhau. C. Hai tam giác có diện tích bằng nhau là điều kiện cần và đủ để hai tam giác đó bằng nhau. D. Hai tam giác bằng nhau khi và chỉ khi là hai tam giác đó có diện tích bằng nhau. + Trong các khẳng định sau, khẳng định nào không phải là mệnh đề? A. Trận chung kết World Cup 2022 thật là thú vị! B. Trận chung kết World Cup 2022 là trận chung kết thứ tám trong lịch sử World Cup thi đấu ở hiệp phụ. C. Người cầm còi điều khiển trận chung kết World Cup 2022 là Szymon Marciniak, trọng tài người Ba Lan. D. Argentina vô địch World Cup 2022.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 10 năm học 2017 - 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề kiểm tra học kỳ 1 Toán 10 năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 16 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 120 phút. Đây là đề thi Toán học kỳ 1 dành cho khối 10 học sinh không chuyên tại trường Hà Nội – Amsterdam, bạn đọc có thể tham khảo đề của lớp chuyên Toán tại đây.
Kiểm tra học kỳ 1 Toán 10 năm học 2017 - 2018 trường THPT Phước Vĩnh - Bình Dương
Kiểm tra học kỳ 1 Toán 10 năm học 2017 – 2018 trường THPT Phước Vĩnh – Bình Dương gồm 25 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Tìm mệnh đề sai trong các mệnh đề sau: A. 2 là một số chính phương B. 2 là một số nguyên C. Nếu một tam giác có ba cạnh bằng nhau thì tam giác đó đều D. 4 là một số chính phương + + Cho phương trình 3x^2 + 2(3m – 1)x + 3m^2 – m + 1 = 0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2 + x2^2 = 34/9 [ads] + Cho hàm số y = -2x/3 + 1/2 có đồ thị là (d). Mệnh đề nào sau đây là đúng? A. (d) cắt trục hoành tại B(0; 1/2) B. Điểm A(1/2; 1) thuộc đường thẳng (d) C. Hàm số f đồng biến trên R D. Hàm số f nghịch biến trên R
Đề kiểm tra chất lượng HK1 Toán 10 năm học 2017 - 2018 trường THPT Giao Thủy B - Nam Định
Đề kiểm tra chất lượng HK1 Toán 10 năm học 2017 – 2018 trường THPT Giao Thủy B – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm 60 phút, đề thi có đáp án và lời giải chi tiết . Bạn đọc có thể cập nhật thường xuyên các đề thi HK1 Toán 10 tại đây.
Đề kiểm tra định kỳ lần 1 Toán 10 năm học 2017 - 2018 sở GD và ĐT Bắc Ninh
Đề kiểm tra định kỳ lần 1 Toán 10 năm học 2017 – 2018 sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = -x^2 + 2x, gọi đồ thị của hàm số là (P). 1. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số đã cho. 2. Tìm tất cả các giá trị của tham số m để đường thẳng d có phương trình y = -2x + m cắt đồ thị (P) tại hai điểm phân biệt. [ads] + Cho hai tập hợp A = {1, 2, 3, 4, 5, 6, 7}, B = {0, 2, 4, 6, 8, 9}. Tìm các tập hợp A ∩ B và A\B. + Cho hình thang ABCD vuông tại A và D, biết AB = AD = 5cm, CD = 10cm. Gọi M và N lần lượt là trung điểm của AD và CD. a. Chứng minh rằng: vtAM + vtBN = vtAN + vtBM b. Tính |vtMA + vtMC + 2vtMN|