Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Bình Yên Bái

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Bình Yên Bái Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Yên Bình Yên Bái Đề học sinh giỏi huyện lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Yên Bình Yên Bái Chào quý thầy cô và các em học sinh lớp 8, đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái, bao gồm đề chính thức và đề dự bị. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Kỳ thi sẽ diễn ra vào ngày 28 tháng 11 năm 2022. Cụ thể, đề thi gồm các câu hỏi sau: Tìm giá trị nhỏ nhất của biểu thức: A = 2×2 + 3x - 4. Tìm các số nguyên x, y thỏa mãn: 2xy + 3x - 5y = 9. Cho hình vuông ABCD. Qua A vẽ hai đường thẳng vuông góc với nhau lần lượt cắt đường thẳng BC tại P và R, cắt đường thẳng CD tại Q và S. Chứng minh ∆AQR và ∆APS là các tam giác cân. QR cắt PS tại H; M, N lần lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. Chứng minh P là trực tâm ∆SQR. Chứng minh MN là đường trung trực của AC. Chứng minh bốn điểm M, B, N, D thẳng hàng. File WORD của đề thi có sẵn để quý thầy cô tham khảo. Hãy chuẩn bị kỹ càng và chăm chỉ để vượt qua bài thi một cách xuất sắc. Chúc quý thầy cô và các em học sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC nhọn (AB < AC), đường cao AD, CF cắt nhau tại H. Gọi M là điểm thuộc đoạn thẳng DC sao cho BM < 2BD. Qua A vẽ đường thẳng vuông góc với AM cắt CH tại K. a. Chứng minh rằng: KAH AMB. b. Lấy G đối xứng với H qua K. Gọi P là trung điểm của BM. Chứng minh: AG AP. c. Khi BM = 2MC, gọi N là giao điểm của AG và BH. Chứng minh: AG = 2AN. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn là số có 4 chữ số thỏa mãn chữ số đứng sau lớn hơn chữ số đứng trước.