Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán thi vào 10 năm 2022 2023 phòng GD ĐT Ba Đình Hà Nội

Nội dung Đề khảo sát Toán thi vào 10 năm 2022 2023 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán thi vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình Hà Nội Đề khảo sát Toán thi vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Đây là đề khảo sát môn Toán luyện thi tuyển sinh vào lớp 10 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội. Kì thi sẽ diễn ra vào thứ Sáu ngày 29 tháng 04 năm 2022. Bài thi bao gồm các câu hỏi, đáp án chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề khảo sát: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đội sản xuất phải làm 10,000 khẩu trang trong một thời gian quy định. Nhờ cải tiến kĩ thuật, mỗi ngày đội sản xuất được thêm 200 khẩu trang. Hỏi số khẩu trang mà đội sản xuất phải làm trong một ngày theo dự định. 2. Tính dung tích của thùng nước hình trụ có bán kính đáy 0,2m và chiều cao 0,4m. (Bỏ qua bề dày của thùng nước, lấy pi = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai). 3. Cho đường tròn O, R có hai đường kính AB và CD vuông góc với nhau. Chứng minh tứ giác OHEB là tứ giác nội tiếp và giải các câu hỏi liên quan đến tỉ lệ và tìm vị trí của điểm I trên đoạn thẳng OB. Chúc quý thầy cô và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - BR VT
Đề thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 trường THPT chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào ngày 15 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – BR VT : + Cho đa thức P(x) = (x – 2)(x + 4)(x^2 + ax – 8) + bx^2 với a và b là các số thực thỏa mãn a + b < 1. Chứng minh rằng phương trình P(x) = 0 có bốn nghiệm phân biệt. + Cho đường tròn (O) có đường kính AB. Từ điểm S thuộc tia đối của tia AB kẻ đến (O) hai tiếp tuyến SC và SD (C và D là hai tiếp điểm). Gọi H là giao điểm của đường kính AB và dây CD. Vẽ đường tròn (O) đi qua C và tiếp xúc với đường thẳng AB tại S. Hai đường tròn (O) và (O’) cắt nhau tại điểm M khác C. a) Chứng minh tứ giác SMHD nội tiếp. [ads] b) Gọi K là hình chiếu vuông góc của C trên BD, I là giao điểm của BM và CK. Chứng minh HI song song với BD. c) Các đường thẳng SM và HM lần lượt cắt (O) tại các điểm L và T (L và T khác M). Chứng minh rằng tứ giác CDTL là hình vuông khi và chỉ khi MC^2 = MS.MD. + Cho tam giác ABC có ba góc nhọn và có trực tâm H. Gọi D, E, F lần lượt là chân ba đường cao kẻ từ A, B, C của tam giác ABC. Biết (AB/HF)^2 + (BC/HD)^2 + (CA/HE)^2 = 36, hãy chứng minh rằng tam giác ABC đều.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Hưng Yên (chuyên)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Hưng Yên (chuyên) dành cho thí sinh dự thi vào các lớp chuyên Toán, chuyên Tin; đề gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Hưng Yên (chuyên) : + Cho hình vuông ABCD tâm O, cạnh a. M là điểm di động trên đoạn OB (M khác O và B). Vẽ đường tròn tâm I đi qua M và tiếp xúc với BC tại B, vẽ đường tròn tâm J đi qua M và tiếp xúc với CD tại D. Đường tròn (I) và đường tròn (J) cắt nhau tại điểm thứ hai là N. a) Chứng minh rằng 5 điểm A, N, B, C, D cùng thuộc một đường tròn. b) Chứng minh 3 điểm C, M, N thẳng hàng. [ads] + Cho tam giác MNP vuông cân tại M, MN = a. Lấy điểm D thuộc cạnh MN; điểm E thuộc cạnh NP sao cho chu vi tam giác NDE bằng 2a. Tìm giá trị lớn nhất của diện tích tam giác NDE. + Cho a, b là các số dương thỏa mãn điều kiện (a + b)^3 + 4ab ≤ 12. Chứng minh rằng: 1/(1 + a) + 1/(1 + b) + 2020ab ≤ 2021.
Đề Toán tuyển sinh lớp 10 năm 2020 - 2021 trường chuyên Nguyễn Trãi - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh lớp 10 năm 2020 – 2021 trường chuyên Nguyễn Trãi – Hải Dương, đề thi gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2020 – 2021 trường chuyên Nguyễn Trãi – Hải Dương : + Tìm tất cả các số tự nhiên a để a – 2; 4a^2 – 16a + 17; a^2 – 24a + 25 đều là các số nguyên tố. + Cho đường tròn (O;R), hai đường kính AB và CD vuông góc với nhau. Lấy E là điểm bất kỳ nằm trên cung nhỏ AD (E không trung với A và D). Đường thẳng BC cắt OA tại M; đường thẳng EB cắt OD tại N. a) Chứng minh rằng: AM.ED = OM.EA. b) Xác định vị trí điểm E để tổng OM/AM + ON/DN đạt giá trị nhỏ nhất. [ads] + Cho nửa đường tròn (O) đường kính MN. Trên tia đối của tia MO lấy điểm B. Trên tia đối của tia NO lấy điểm C. Từ B và C kẻ các tiếp tuyến với nửa đường tròn (O), chúng cắt nhau tại A, tiếp điểm của nửa đường tròn (O) với BA, AC lần lượt là E, D. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AH, BD, CE đồng quy.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nội
Sáng thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đáp án và lời giải chi tiết của đề thi sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ nhà An đến nhà Bình dài 3 km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9 km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút (giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó). + Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx +4 với m khác 0. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.