Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Trần Đại Nghĩa TP HCM

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường chuyên Trần Đại Nghĩa TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT chuyên Trần Đại Nghĩa, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 000. Trích dẫn Đề cuối học kì 1 Toán lớp 10 năm 2022 – 2023 trường chuyên Trần Đại Nghĩa – TP HCM : + Mệnh đề nào sau đây là phủ định của mệnh đề: “Mọi động vật đều di chuyển”. A. Mọi động vật đều không di chuyển. B. Mọi động vật đều đứng yên. C. Có ít nhất một động vật không di chuyển. D. Có ít nhất một động vật di chuyển. + Một ô tô muốn đi từ địa điểm A đến địa điểm B, nhưng giữa A và B là một ngọn núi cao nên ô tô phải đi thành 2 đoạn từ A đến C và từ C đến B. Tam giác ABC (tham khảo hình vẽ) có AB 15km BC 20km và 0 ACB 120. Nếu người ta đào một đường xuyên núi chạy thẳng từ A đến B thì ô tô chạy trên con đường mới này tiết kiệm được số tiền gần nhất là bao nhiêu? Biết trung bình cứ chạy 1km, ô tô tiêu thụ hết 0,3 lít xăng. Giá thành xăng hiện nay là 25000 đồng một lít xăng. + Trong tuần lễ áp dụng chương trình khuyến mãi Black Friday, một cửa hàng luôn có số sản phẩm bán ra của ngày sau hơn ngày trước khoảng 10%. Nhưng trong bảng thống kê sau của 6 ngày áp dụng chương trình khuyến mãi, có một ngày bị nhập sai số sản phẩm được bán ra. Ngày đó là ngày nào?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Trương Vĩnh Ký TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Trương Vĩnh Ký TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Trương Vĩnh Ký, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Trương Vĩnh Ký – TP HCM : + Tìm tập xác định của các hàm số sau. + Giải các phương trình và hệ phương trình sau. + Trong mặt phẳng Oxy, cho tam giác ABC với A(1;-2), B(-3;2), C(2;7). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Chứng tỏ tam giác ABC vuông tại B. c) Tìm tọa độ điểm D để ABCD là hình chữ nhật. d) Tìm tọa độ điểm E biết tam giác BCE có độ dài cạnh BE = 1 và độ dài cạnh CE là một số nguyên.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(3;2), C(0;3). a) Tìm tọa độ điểm N sao cho ABCN là hình bình hành. b) Tìm tọa độ điểm H là giao điểm của đường thẳng AB và trục tung. + Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y = x2 + 4x. + Cho 3tanx + 5 = 0 với x là góc tù. Tính giá trị biểu thức P = 4cosx/(sinx)^2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Lý Thái Tổ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Lý Thái Tổ – TP HCM : + Tìm m để phương trình có hai nghiệm thỏa điều kiện. + Tìm tập xác định của các hàm số. + Xét sự biến thiên và vẽ đồ thị của hàm số: y = 2×2 – 4x + 2.