Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Yên Bái

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Yên Bái : + Chứng minh rằng với mọi số tự nhiên n, số B = 9.52n + 13.3n luôn chia hết cho 22. + Tìm tất cả các cặp số nguyên dương (a;b) sao cho ab là ước của a2 + b. + Cho X là tập hợp gồm 26 số nguyên dương đôi một khác nhau, mỗi số không lớn hơn 100. Chứng minh trong X luôn tồn tại hai số x và y sao cho x – y thuộc tập hợp {5;10;15}.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Quốc học Huế : + Trên mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3 (m khác 0). Tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 6 cm2 (với O là gốc tọa độ, đơn vị đo trên các trục tọa độ là xentimét). + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Tìm tất cả các giá trị nguyên dương của x và y thoả mãn x2 – 2^y.x – 4^21.9 = 0.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An; đề thi được dành cho các thí sinh thi vào trường THPT chuyên Phan Bội Châu (Nghệ An) và trường THPT chuyên – trường Đại học Vinh (Nghệ An); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và đường thẳng AO cắt đường tròn (O) tại E (E khác A). a) Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. b) Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. c) Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của P Q. Chứng minh rằng AN luôn đi qua một điểm cố định. + Cho 676 số nguyên tố khác nhau. Chứng minh rằng có ít nhất hai số trong các số đã cho mà hiệu của chúng chia hết cho 2022. + Tìm số nguyên dương n để n − 23 n + 89 là bình phương một số hữu tỉ dương.
Đề Toán (chuyên) thi vào 10 năm 2021 - 2022 trường chuyên Lê Quý Đôn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán (chuyên) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Trị; đề thi được dành cho thí sinh thi chuyên Toán; kỳ thi được diễn ra vào sáng thứ Năm ngày 03 tháng 06 năm 2021.