Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất cơ bản của phân số, rút gọn phân số
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất cơ bản của phân số, rút gọn phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Nắm vững tính chất cơ bản của phân số. + Nắm được cách rút gọn phân số. + Hiểu được khái niệm phân số tối giản. Kĩ năng: + Viết được phân số có mẫu âm thành phân số bằng nó có mẫu dương. + Vận dụng tính chất của phân số để so sánh, rút gọn các phân số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm số chưa biết trong đẳng thức của phân số. Nhân hoặc chia cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Dạng 2 . Rút gọn phân số – rút gọn biểu thức dạng phân số. Để rút gọn phân số ta chia cả tử và mẫu của nó cho một ước chung (khác 1 và -1) của chúng. Khi nói rút gọn một phân số, ta thường hiểu là đưa phân số đó về dạng tối giản. Để rút gọn phân số 0 a b b thành phân số tối giản, ta làm như sau: + Bước 1. Tìm ƯCLN(a;b) = n. + Bước 2. Chia cả tử và mẫu cho n. Dạng 3 . Phân số bằng nhau. Dạng 4 . Biểu diễn các số đo dưới dạng phân số với đơn vị cho trước. Dựa vào tỉ lệ của các đại lượng mà ta chuyển về dạng phân số. Dạng 5 . Phân số tối giản. Phân số a/b tối giản nếu |a| và |b| là hai số nguyên tố cùng nhau, hay ƯC(a;b) = {-1;1}. Chứng minh phân số a/b tối giản: Ta chứng minh ƯCLN(a;b) = 1.
Chuyên đề phân số bằng nhau
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phân số bằng nhau, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Hiểu được khái niệm hai phân số bằng nhau. Kĩ năng: + Nhận dạng được hai phân số bằng nhau, không bằng nhau. + Lập được các cặp phân số bằng nhau từ một đẳng thức tích. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết các cặp phân số bằng nhau. Dạng 2 . Tìm số chưa biết trong đẳng thức của hai phân số. Dạng 3 . Viết các phân số bằng nhau từ đẳng thức đã cho.
Chuyên đề mở rộng khái niệm phân số
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề mở rộng khái niệm phân số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 3: Phân số. Mục tiêu : Kiến thức: + Thấy được sự khác nhau và giống nhau giữa khái niệm phân số đã học ở tiểu học và khái niệm phân số ở lớp 6. Kĩ năng: + Viết được các phân số mà tử số và mẫu số là các số nguyên. + Biết cách dùng phân số để diễn đạt một nội dung thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viết các phân số. “a phần b” hoặc a : b được viết thành a/b (trong đó b khác 0). Biểu diễn phân số của một hình cho trước: + Mẫu cho biết số phần bằng nhau được chia ra. + Tử cho biết số phần được lấy (tô màu). Dạng 2 : Viết các số nguyên kẹp giữa hai phân số có tử là bội của mẫu. + Bước 1. Tính giá trị của các phân số đã cho dưới dạng số nguyên. + Bước 2. Tìm tất cả các số nguyên “kẹp giữa” hai số nguyên đó. Dạng 3 : Điều kiện để phân số tồn tại. Điều kiện để một biểu thức có giá trị là một số nguyên. Phân số a/b tồn tại khi a b và b khác 0. Phân số a b có giá trị là một số nguyên khi a b.
Chuyên đề bội và ước của một số nguyên
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề bội và ước của một số nguyên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 2: Số nguyên. Mục tiêu : Kiến thức: + Nhận biết được quan hệ chia hết, khái niệm ước và bội trong tập hợp các số nguyên. Kĩ năng: + Xác định được bội và ước của các số nguyên cho trước. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 . Tìm bội (ước) của một số nguyên. Bội của một số nguyên a có dạng a m m. Ước của một số nguyên: + Nếu số nguyên có giá trị tuyệt đối nhỏ thì nhẩm xem nó chia hết cho những số nào rồi từ đó tìm các ước cả ước dương và ước âm. + Nếu số nguyên có giá trị tuyệt đối lớn thì phân tích số đó ra thừa số nguyên tố để tìm ước. Dạng 2 . Tìm x thỏa mãn đẳng thức. Dạng 3 . Tìm x thỏa mãn điều kiện chia hết.