Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát CLB lớp 8 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội

Nội dung Đề khảo sát CLB lớp 8 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát CLB Toán lớp 8 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội Đề khảo sát CLB Toán lớp 8 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội Chào các thầy cô giáo và các bạn học sinh lớp 8! Dưới đây là đề khảo sát cho câu lạc bộ môn Toán lớp 8 của trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Hãy cùng thử sức và kiểm tra kiến thức của mình trong giai đoạn học kỳ 2 năm học 2022 - 2023! Trích dẫn đề khảo sát CLB Toán lớp 8 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội: 1. Cho biểu thức M. Chúng ta cần rút gọn biểu thức M, tìm giá trị của a để biểu thức này lớn hơn 0, tìm a nguyên để M nhận giá trị nguyên, và tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. 2. Cho tam giác ABC nhọn và các đường cao AD, BE, CF cắt nhau tại trực tâm H. Gọi M là trung điểm BC và K là điểm đối xứng với H qua M. Chúng ta cần chứng minh các tính chất của tứ giác BHCK, của IM là trung trực của EF, và suy ra AK vuông góc với EF. Cuối cùng, cần chứng minh góc BIT là góc vuông. 3. Trò chơi đầy thú vị trên bảng với các số 2022, 2023, 2024. Hãy đưa ra chiến thuật để bạn Đan là người chiến thắng trong trò chơi này, để có thể đưa một số về 0 và đạt chiến thắng. Hãy thử giải thích và đưa ra lời giải cho các câu hỏi trên. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ
Nội dung Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Bản PDF - Nội dung bài viết Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tài liệu này bao gồm 89 trang với 100 đề thi chọn lọc từ học sinh giỏi môn Toán lớp 8 đến từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Được biên soạn và tổng hợp bởi thầy Hồ Khắc Vũ, tài liệu này sẽ giúp các em học sinh chuẩn bị tốt hơn cho kì thi học sinh giỏi.
Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên được thiết kế với 6 bài toán tự luận, dành cho học sinh có kiến thức và kỹ năng Toán cao cấp. Thời gian làm bài được giới hạn trong 60 phút để thử thách sự nhanh nhạy và chính xác của thí sinh. Bài toán đầu tiên yêu cầu học sinh chứng minh Tứ giác AMDN là hình gì và vị trí của điểm D trên cạnh BC để đạt được độ dài MN nhỏ nhất, cùng tính số đo góc MHN trong tam giác ABC. Bài toán thứ hai yêu cầu học sinh chứng minh rằng biểu thức (x - 1)(2x^2 + x + 1) - (x - 2)(2x^2 + 3x + 6) không phụ thuộc vào các biến, làm quen với phép toán đơn giản nhưng logic và chính xác. Bài toán thứ ba đưa ra bài toán tìm giá trị của x và y sao cho 9xy + 3x + 3y = 51, kích thích khả năng suy luận và giải quyết vấn đề của học sinh. Trong bài toán cuối cùng, học sinh sẽ phải tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 - 4xy + 6x - 14y + 15, yêu cầu kết hợp nhiều phép toán và kiến thức Toán học để giải quyết bài toán phức tạp. Đề thi này không chỉ đánh giá kiến thức mà còn khích lệ học sinh phát huy sự sáng tạo, logic và khả năng giải quyết vấn đề, từ đó phát triển tư duy Toán học toàn diện. Đồng thời, cũng giúp học sinh thấy được mục tiêu mà họ cần hướng đến và cần cố gắng nỗ lực hơn trong học tập.
Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu. Kỳ thi đã diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016-2017 sở GD&ĐT Lai Châu: Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N, còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q. a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân. b) Đường thẳng QM cắt NP ở R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Vì sao? c) Chứng minh bốn điểm F, H, K, I thẳng hàng. Cho biểu thức a) Rút gọn A; b) Tìm giá trị nguyên của x để A có giá trị nguyên. Cho ba số a, b, c thỏa mãn điều kiện abc = 2017. Tính giá trị của biểu thức: P = 2^(ab) * 3^(ac) * 5^(bc) * 9^(abc).
Đề thi HSG cấp huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Cẩm Xuyên Hà Tĩnh
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Cẩm Xuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh Đề thi HSG cấp huyện Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi HSG cấp huyện môn Toán lớp 8 năm 2016 – 2017 do phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh biên soạn. Bạn hãy giải và phân tích bài toán sau đây cẩn thận nhé: Bài toán 1: Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại Q. E là trung điểm của IQ, tia DE cắt BC tại F. Qua I vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng: a) Tứ giác IHQF là hình thoi. b) Tổng 1/DI2 + 1/DK2 không đổi khi I thay đổi trên cạnh AB. Bài toán 2: Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8cm. Gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Tính độ dài đoạn thẳng MN. Bài toán 3: Cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD = 3 cm và DC = 5 cm. Tính độ dài AB và BC. Hy vọng rằng bài toán sẽ giúp các em rèn luyện và củng cố kiến thức môn Toán một cách hiệu quả. Chúc các em ôn tập tốt và đạt kết quả cao trong kì thi sắp tới!