Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Trạch Mỹ Lộc - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Trạch Mỹ Lộc, huyện Phúc Thọ, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và biểu điểm. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Trạch Mỹ Lộc – Hà Nội : + Cho hàm số y = (m – 1)x + 3 với m là tham số m khác 1. a) Tìm m để đồ thị hàm số cắt trục hoành tại điểm M có hoành độ 2. b) Vẽ đồ thị hàm số với giá trị m vừa tìm được. c) Gọi N là giao điểm của đồ thị vẽ ở câu 2 với trục tung. Tính khoảng cách từ gốc tọa độ O tới đường thẳng MN. + Một khúc sông rộng khoảng 320 m. Một con thuyền di chuyển vượt khúc sông nước chảy mất 8 phút. Tính vận tốc của con thuyền biết rằng đường đi của con thuyền tạo với bờ một góc 0 35 (làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn O từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB AC với đường tròn (BC là tiếp điểm). Gọi H là trung điểm của BC. a) Chứng minh ba điểm A O H thẳng hàng và các điểm A, B, C, O cùng thuộc một đường tròn. b) Kẻ đường kính BD của O. Vẽ CK vuông góc với BD. Chứng minh AC CD CK AO. c) Tia AO cắt đường tròn O tại M (M nằm giữa A và O). Chứng minh M là tâm đường tròn nội tiếp tam giác ABC. d) Gọi I là giao điểm của AD và CK. Chứng minh I là trung điểm của CK.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Xuân Đỉnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Xuân Đỉnh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022.
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 07 tháng 10 năm 2022.
Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng định kì môn Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 74° và bóng của tháp trên mặt đất lúc đó là 86m (làm tròn kết quả tới hàng đơn vị). + Cho hàm số bậc nhất: y = (m + 1)x + 3 (d) với m khác -1. a) Vẽ đồ thị hàm số tại m = 1. b) Tìm m để đồ thị hàm số trên đi qua A(-1;-2). c) Tìm m để khoảng cách từ O(0;0) đến đường thẳng (d) bằng 3. + Cho nửa đường tròn (O), đường kính AB. Gọi C là điểm bất kì trên nửa đường tròn (O) (C khác A, C khác B). Từ C vẽ tia Ox là tiếp tuyến với nửa đường tròn (O). Từ O vẽ đường thẳng vuông góc với dây AC cắt tia Ox tại K. 1) Chứng minh KA là tiếp tuyến của nửa đường tròn (O). 2) Chứng minh bốn điểm K, A, O, C cùng thuộc một đường tròn. 3) Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C. I là trung điểm của CH. Gọi E là giao điểm của HD và BI. Chứng minh: HE.HD =HC2.
Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 9 năm học 2022 – 2023 trường THCS Cầu Diễn, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày phải làm được 18 sản phẩm. Nhưng thực tế do cải tiến kĩ thuật, mỗi ngày tổ đã làm được thêm 4 sản phẩm nên đã hoàn thành công việc trước 3 ngày và còn vượt mức 14 sản phẩm. Tính số sản phẩm tổ đó phải làm theo kế hoạch. + Cho tam giác MNP vuông tại M có đường cao MH; HN = 9cm; HP = 16cm. a) Tính: MN; MP; MH? b) Gọi I, K lần lượt là hình chiếu vuông góc của H lên MN, MP. Tính IK? c) Tính diện tích tứ giác NIKP? + Cho các số thực dương a, b thỏa mãn: ab > 202la + 2022b. Chứng minh bắt đẳng thức: a + b > (2021 + 2022)^2.