Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ôn luyện Toán 9 theo chủ đề (tập 2)

Tài liệu gồm 199 trang, bao gồm tóm tắt lý thuyết, bài tập và các dạng toán, giúp học sinh lớp 9 ôn luyện Toán 9 theo chủ đề (tập 2). Mục lục : CHỦ ĐỀ 1. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 1. + Vấn đề 1. Phương trình bậc nhất hai ẩn 1. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 5. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 9. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 13. + Vấn đề 5. Hệ phương trình bậc nhất hai ẩn chứa tham số 17. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 20. + Vấn đề 7. Giải bài toán bằng cách lập hệ phương trình (phần 2) 23. Ôn tập chủ đề 1 (phần 1) 26. Ôn tập chủ đề 1 (phần 2) 29. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 32. + Vấn đề 1. Hàm số y = ax2 (a khác 0) và đồ thị (phần 1) 32. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 36. + Vấn đề 3. Công thức nghiệm 38. + Vấn đề 4. Công thức nghiệm 42. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 46. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 50. + Vấn đề 7. Phương trình quy về phương trình bậc hai 54. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 58. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 62. + Vấn đề 10. Bài toán về đường thẳng và parabol 66. Ôn tập chủ đề 2 69. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 73. + Vấn đề 1. Góc ở tâm. Số đo cung 73. + Vấn đề 2. Liên hệ giữa cung và dây 75. + Vấn đề 3. Góc nội tiếp (phần 1) 77. + Vấn đề 4. Góc nội tiếp (phần 2) 78. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 80. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây cung (phần 2) 81. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 1) 84. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 85. + Vấn đề 9. Cung chứa góc 88. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 90. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 92. + Vấn đề 12. Độ dài đường tròn, cung tròn 94. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 98. Ôn tập theo chủ đề 3 101. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CẦU 104. + Vấn đề 1. Diện tích xung quanh và thể tích của hình trụ 104. + Vấn đề 2. Diện tích xung quanh và thể tích hình nón, hình nón cụt 106. + Vấn đề 3. Diện tích và thể tích mặt cầu 108. Ôn tập chủ đề 4 111. HƯỚNG DẪN GỢI Ý ĐÁP ÁN 113. CHỦ ĐỀ 1. PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 113. + Vấn đề 1. Phương trình bậc nhất hai ẩn 113. + Vấn đề 2. Hệ hai phương trình bậc nhất hai ẩn 116. + Vấn đề 3. Giải hệ phương trình bằng phương pháp thế 118. + Vấn đề 4. Giải hệ phương trình bằng phương pháp cộng đại số 120. + Vấn đề 5. Hệ phương trình bậc nhất 122. + Vấn đề 6. Giải bài toán bằng cách lập hệ phương trình (phần 1) 125. Ôn tập chủ đề 1 (phần 1) 128. Ôn tập chủ đề 1 (phần 2) 131. CHỦ ĐỀ 2. HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 133. + Vấn đề 2. Hàm số y = ax2 (a khác 0) và đồ thị (phần 2) 135. + Vấn đề 3. Công thức nghiệm của phương trình bậc hai (phần 1) 138. + Vấn đề 4. Công thức nghiệm của phương trình bậc hai (phần 2) 140. + Vấn đề 5. Hệ thức Vi-ét và ứng dụng (phần 1) 143. + Vấn đề 6. Hệ thức Vi-ét và ứng dụng (phần 2) 147. + Vấn đề 7. Phương trình quy về phương trình bậc hai 149. + Vấn đề 8. Giải bài toán bằng cách lập phương trình (phần 1) 151. + Vấn đề 9. Giải bài toán bằng cách lập phương trình (phần 2) 154. + Vấn đề 10. Bài toán về đường thẳng và parabol 156. Ôn tập chủ đề 2 158. CHỦ ĐỀ 3. GÓC VỚI ĐƯỜNG TRÒN 160. + Vấn đề 1. Góc ở tâm. Số đo cung 160. + Vấn đề 2. Liên hệ giữa cung và dây 161. + Vấn đề 3. Góc nội tiếp (phần 1) 163. + Vấn đề 4. Góc nội tiếp (phần 2) 165. + Vấn đề 5. Góc tạo bởi tia tiếp tuyến và dây (phần 1) 167. + Vấn đề 6. Góc tạo bởi tia tiếp tuyến và dây (phần 2) 168. + Vấn đề 7. Góc có đỉnh bên trong hay bên ngoài 170. + Vấn đề 8. Góc có đỉnh bên trong hay bên ngoài đường tròn (phần 2) 172. + Vấn đề 9. Cung chứa góc 174. + Vấn đề 10. Tứ giác nội tiếp (phần 1) 175. + Vấn đề 11. Tứ giác nội tiếp (phần 2) 177. + Vấn đề 12. Độ dài đường tròn, cung tròn 180. + Vấn đề 13. Diện tích hình tròn, hình quạt tròn 183. Ôn tập chủ đề 3 186. CHỦ ĐỀ 4. HÌNH TRỤ, HÌNH NÓN, HÌNH CÂU 191. + Vấn đề 1. Diện tích xung quanh và thể tích hình trụ 191. + Vấn đề 2. Diện tích xung quanh và thể tích của hình nón, hình nón cụt 193. + Vấn đề 3. Diện tích và thể tích của mặt cầu 194. Ôn tập chủ đề 4 196.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cực trị Hình học 9
Tài liệu gồm 21 trang hướng dẫn phương pháp giải bài toán cực trị Hình học 9, đây là lớp các bài toán nâng cao trong đề thi Toán 9 và đề tuyển sinh vào lớp 10 môn Toán. A – Phương pháp giải bài toán cực trị hình học 1- Dạng chung của bài toán cực trị hình học Trong tất cả các hình có chung một tính chất , tìm những hình mà một đại lượng nào đó (độ dài đoạn thẳng , số đo góc, số đo diện tích …) có giá trị lớn nhất hoặc giá trị nhỏ nhất.” và có thể được cho dưới các dạng: a) Bài toán về dựng hình Ví dụ : Cho đường tròn (O) và điểm P nằm trong đường tròn, xác định vị trí của dây đi qua điểm P sao cho dây đó có độ dài nhỏ nhất. b) Bài toán vể chứng minh  Ví dụ : Chứng minh rằng trong các dây đi qua điểm P trong một đường tròn (O), dây vuông góc với OP có độ dài nhỏ nhất. c) Bài toán về tính toán Ví dụ : Cho đường tròn (O;R) và điểm P nằm trong đường tròn có OP = h. Tính độ dài nhỏ nhất của dây đi qua P. 2 – Hướng giải bài toán cực trị hình học a) Khi tìm vị trí của hình H trên miền D sao cho biểu thức f có giá trị lớn nhất ta phải chứng tỏ được: + Với mọi vị trí của hình H trên miền D thì f ≤ m (m là hằng số) + Xác định vị trí của hình H trên miền D sao cho f = m b) Khi tìm vị trí của hình H trên miền D sao cho biểu thức f có giá trị nhỏ nhất ta phải chứng tỏ được: + Với mọi vị trí của hình H trên miền D thì f ≥ m (m là hằng số) + Xác định vị trí của hình H trên miền D để f = m [ads] 3 – Cách trình bày lời giải bài toán cực trị hình học + Cách 1 :Trong các hình có tính chất của đề bài,chỉ ra một hình rồi chứng minh mọi hình khác đều có giá trị của đại lượng phải tìm cực trị nhỏ hơn (hoặc lớn hơn) giá trị của đại lượng đó của hình đã chỉ ra. + Cách 2 : Biến đổi tương đương điều kiện để đại lượng này đạt cực trị bởi đại lượng khác đạt cực trị cho đến khi trả lời được câu hỏi mà đề bài yêu cầu. B – Các kiến thức thường dùng giải bài toán cực trị hình học 1 – Sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu 2 – Sử dụng quan hệ giữa đường thẳng và đường gấp khúc 3 – Sử dụng các bất đẳng thức trong đường tròn 4 – Sử dụng bất đẳng thức về lũy thừa bậc hai 5 – Sử dụng bất đẳng thức Cô-si 6 – Sử dụng tỉ số lượng giác C – Bài tập cực trị hình học 9 có lời giải chi tiết
Sơ đồ tư duy Toán 9
THCS. giới thiệu đến bạn đọc bộ sơ đồ tư duy Toán 9: Đại số 9 và Hình học 9. Học toán qua qua sơ đồ tư duy Toán 9 là một phương pháp học tập hiện đại, giúp học sinh nhớ nhanh và khắc sâu các kiến thức Toán 9 được gói gọn trong các hình ảnh, ngoài ra còn giúp học sinh nhận ra được mối liên hệ giữa các kiến thức Toán 9. 1. Sơ đồ tư duy căn bậc hai và căn bậc ba 2. Sơ đồ tư duy hàm số   3. Sơ đồ tư duy tam giác [ads] 4. Sơ đồ tư duy tứ giác 5. Sơ đồ tư duy đường tròn
Tài liệu ôn thi cấp tốc Đại số 9 - Huỳnh Đức Khánh
Tài liệu gồm 29 trang tuyển chọn các bài tập điển hình trong các nội dung Đại số 9, giúp học sinh ôn tập nhanh kiến thức Toán 9. Nội dung tài liệu : Phần 1. Rút gọn căn số Phần 2. Rút gọn biểu thức Phần 3. Hàm số bậc nhất Phần 4. Hệ phương trình bậc nhất hai ẩn Phần 5. Hàm số bậc hai Phần 6. Phương trình bậc hai Phần 7. Giải bài toán bằng cách lập phương trình – lập hệ phương trình [ads] + Bài toán hình học + Bài toán vận tốc + Bài toán công nhân làm việc – bài toán vòi nước + Bài toán luân chuyển xe + Bài toán tăng năng suất + Một số bài toán khác
Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Tài liệu gồm 26 trang hướng dẫn giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán 9. Phương pháp giải chung : Bước 1. Lập phương trình hoặc hệ phương trình + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị) + Dựa vào dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình Bước 2. Giải phương trình hoặc hệ phương trình Bước 3. Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời (bằng câu viết) nêu rõ đơn vị của đáp số Các dạng toán cơ bản : + Dạng toán chuyển động + Dạng toán liên quan đến các kiến thức hình học + Dạng toán công việc làm chung, làm riêng + Dạng toán chảy chung, chảy riêng của vòi nước + Dạng toán tìm số + Dạng toán sử dụng các kiến thức về % + Dạng toán sử dụng các kiến thức vật lý, hóa học [ads] Các công thức cần lưu ý khi giải bài toán bằng cách lập phương trình, hệ phương trình : + Thời gian t, quãng đường s, vận tốc v: s = v.t, v = s/t, t = s/v + Chuyển động của tàu thuyền khi có tác động dòng nước: V xuôi dòng = V thực + V dòng nước V ngược dòng = V thực – V dòng nước + Khối lượng công việc A, năng suất lao động N, thời gian làm việc T: A = N.T