Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Hoa Lư TP HCM

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Hoa Lư TP HCM Bản PDF - Nội dung bài viết Bảng Đề thi giữa học kì 2 Toán lớp 9 năm 2020 – 2021 trường THCS Hoa Lư TP HCM Bảng Đề thi giữa học kì 2 Toán lớp 9 năm 2020 – 2021 trường THCS Hoa Lư TP HCM Xin chào quý thầy cô và các em học sinh lớp 9! Chúng ta sẽ cùng tìm hiểu về đề thi kiểm tra chất lượng giữa học kì 2 môn Toán lớp 9 năm học 2020 – 2021 tại trường THCS Hoa Lư, thành phố Hồ Chí Minh. Hãy cùng điểm qua hai bài toán thú vị trong đề thi này: Bài 1: Bài kiểm tra môn Toán tháng trước của lớp 9A Trong bài kiểm tra môn Toán tháng trước của lớp 9A, số bạn đạt điểm giỏi (từ 8 điểm trở lên) bằng một nửa số bạn đạt điểm khá (từ 6,5 đến 7,9 điểm). Trong bài kiểm tra Toán tháng này, số bạn đạt điểm giỏi tăng thêm 25% so với tháng trước, số bạn đạt điểm khá giảm 9 học sinh so với tháng trước nên số bạn đạt điểm giỏi và khá bằng nhau. Hãy tìm số bạn đạt điểm giỏi môn Toán trong bài kiểm tra tháng trước của lớp 9A. Bài 2: Tính bán kính của đường tròn chứa cung AMB Một chiếc cầu được thiết kế như hình bên, có độ dài AB = 50 m, chiều cao MK = 6 m. Hãy tính bán kính của đường tròn chứa cung AMB. Để giải bài toán này, chúng ta cần tìm bán kính của đường tròn chứa cung AMB theo phương pháp đơn giản và logic. Đây là hai bài toán thú vị trong đề thi giữa học kì 2 Toán lớp 9 năm 2020 – 2021 trường THCS Hoa Lư. Hãy cùng nhau giải quyết và thể hiện tài năng của mình trong môn Toán nhé!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 2 Toán 9 năm 2022 2023 trường THCS Lê Lợi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Lê Lợi, quận Hoàn Kiếm, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Lê Lợi – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tính chiều dài và chiều rộng của một hình chữ nhật biết rằng: nếu tăng chiều dài thêm 3m và giảm chiều rộng đi 2m thì diện tích hình chữ nhật không thay đổi; nếu giảm chiều dài đi 3m và tăng chiều rộng thêm 3m thì diện tích hình chữ nhật không thay đổi. + Cho phương trình x2 – mx + m – 1 = 0. a) Giải phương trình với m = 3. b) Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn x12 + x22 = 2. + Cho đường tròn (O), đường kính AB. Gọi H là điểm cố định trên đoạn OB (H khác O, B). Dựng đường thẳng d qua H vuông góc với AB. Điểm C di động trên đường thẳng d sao cho C nằm ngoài (O), BC cắt (O) tại điểm thứ hai D, AD cắt d tại E. 1) Chứng minh tứ giác BDEH nội tiếp. 2) Chứng minh HE.HC = HA.HB. 3) Đường tròn ngoại tiếp tam giác CDE cắt AC tại điểm thứ hai là I. Chứng minh: I thuộc đường tròn (O) và DA là tia phân giác của HDI.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm kết hợp 80% tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình : + Cho hàm số y = ax2 (a ≠ 0) có đồ thị là parabol (P). 1) Tìm a biết parabol (P) đi qua điểm A(2;-2). 2) Vẽ đồ thị của hàm số y = ax2 với a vừa tìm được ở ý trên. + Giải bài toán bằng cách lập hệ phương trình: Để chuẩn bị cho năm học mới, học sinh hai lớp 9A, 9B ủng hộ thư viện của nhà trường được 738 quyển sách, gồm hai loại: sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A ủng hộ 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B ủng hộ 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh lớp 9A, 9B? + Cho nửa đường tròn tâm O, đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C, cắt nửa đường tròn (O) tại I. Lấy điểm K bất kì nằm trên đoạn thẳng CI (K khác C, K khác I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D. 1) Chứng minh tứ giác ACMD nội tiếp. 2) Chứng minh: CK.CD = CA.CB. 3) Gọi N là giao điểm của AD và nửa đường tròn (O). Chứng minh ba điểm B, K, N thẳng hàng.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn cửa cho một ngôi nhà trong 2 ngày thì xong việc. Nếu người thứ nhất làm trong 4 ngày rồi nghỉ và người thứ hai làm tiếp trong 1 ngày thì xong việc. Hỏi nếu mỗi người làm một mình thì bao lâu xong việc? + Một tàu ngầm đang ở trên mặt biển thì lặn xuống theo phương tạo với mặt nước biển một góc 20°. Hỏi nếu tàu chuyển động theo phương lặn xuống được 200m thì nó ở độ sâu bao nhiêu mét so với mặt nước biển? + Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA; MB (A, B là hai tiếp điểm) và cát tuyến MEK (tia ME nằm giữa hai tia MO và MA). Gọi I là trung điểm của EK a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh: MK.ME = MA2 từ đó chứng minh: ME.MK < MO2. c) Gọi S là giao điểm của MK và AB. Chứng minh MIA đồng dạng BIS và IA.IB = SA.SB + IS2.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 90 phút; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi từ tỉnh A đến tỉnh B với một vận tốc đã định. Nếu vận tốc tăng thêm 10 km/h thì thời gian đi được sẽ giảm 1 giờ. Nếu vận tốc giảm bớt 20 km/h thì thời gian đi sẽ tăng thêm 4 giờ. Tính vận tốc và thời gian dự định của ô tô. + Cho hệ phương trình với m là tham số. a. Giải hệ phương trình với m = 2. b. Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x + y = 5. + Cho đường tròn (O;R), BC là dây không đi qua tâm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau ở điểm A. Lấy M thuộc cung nhỏ BC. Kẻ MI, MK, MH lần lượt vuông góc với BC, AB, AC. Chứng minh rằng: 1. Tứ giác BIMK nội tiếp đường tròn. 2. Chứng minh MH.MK = MI2. 3. Gọi BM cắt KI tại E, CM cắt IH tại F. Chứng minh: FE // BC và FE là tiếp tuyến của đường tròn ngoại tiếp tam giác MHF.