Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu chủ đề hai mặt phẳng song song

Tài liệu gồm 27 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai mặt phẳng song song, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 2. I. KIẾN THỨC TRỌNG TÂM 1) Định nghĩa: Hai mặt phẳng được gọi là song song nếu chúng không có điểm chung. 2) Định lý và một số tính chất quan trọng. a) Định lý: Nếu mặt phẳng chứa hai đường thẳng a và b cắt nhau và cùng song song với thì song song với. b) Tính chất 1: Qua một điểm A nằm ngoài mặt phẳng cho trước có duy nhất một mặt phẳng song song với. c) Tính chất 2: Cho hai mặt phẳng và song song với nhau. Khi đó một mặt phẳng nếu cắt và lần lượt theo các giao tuyến a b thì a song song với b. 3) Hình lăng trụ và hình hộp. a) Hình lăng trụ: Hình lăng trụ là một hình đa diện có hai mặt nằm trong hai mặt phẳng song song gọi là đáy và tất cả các cạnh không thuộc hai cạnh đáy đều song song với nhau. b) Hình hộp: Hình lăng trụ có đáy là hình bình hành gọi là hình hộp. II. HỆ THỐNG VÍ DỤ MINH HỌA

Nguồn: toanmath.com

Đọc Sách

121 câu trắc nghiệm quan hệ song song - Nguyễn Quốc Tuấn
Tài liệu gồm 23 trang tuyển chọn 121 câu trắc nghiệm quan hệ song song trong không gian, tài liệu do thầy Nguyễn Quốc Tuấn biên soạn. Trích dẫn tài liệu: 1. Phát biểu nào sau đây là sai? A. Cả 3 câu dưới đều sai. B. Hình thang có thể là hình biểu diễn của một hình bình hành. C. Trọng tâm G của tam giác ABC có hình chiếu song song là trọng tâm G’ của tam giác A’B’C’, trong đó A’B’C’ là hình chiếu song song của tam giác ABC. D. Hình chiếu song song của hai đường chéo nhau có thể là hai đường song song.? [ads] 2. Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Điểm M thuộc cạnh SC sao cho SM = 3MC, N là giao điểm của SD và (MAB). Khi đó hình chiếu song song của SM trên mp(ABC) theo phương chiếu SA là? 3. Cho hình chóp S.ABCD có đáy là hình bình hành. Một mp(α) cắt các cạnh SA,SB,SC,SD lần lượt tại các điểm A’,B’,C’,D’ sao cho tứ giác A’B’C’D’ cũng là hình bình hành. Qua S kẻ Sx, Sy lần lượt song song với AB, AD . Gọi O là giao điểm của AC và BD . Khi đó ta có: A. Giao tuyến của (SAC) và (SB’D’) là đường thẳng Sx B. Giao tuyến của (SB’D’) và (SAC) là đường thẳng SO C. Giao tuyến của (SA’B’) và (SC’D’) là đường thẳng Sy D. Giao tuyến của (SA’D’) và (SBC) là đường thẳng SO