Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Cầu Giấy Hà Nội

Nội dung Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra giữa học kỳ 2 Toán lớp 9 trường THCS Cầu Giấy Hà Nội Đề kiểm tra giữa học kỳ 2 Toán lớp 9 trường THCS Cầu Giấy Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Dưới đây là đề kiểm tra giữa học kỳ 2 môn Toán lớp 9 năm học 2021 – 2022 của trường THCS Cầu Giấy, Hà Nội. Kỳ thi sẽ diễn ra vào thứ Tư ngày 16 tháng 03 năm 2022. Trích dẫn đề kiểm tra giữa kỳ 2 Toán lớp 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB dài 400 km, một ô tô đi từ A đến B với vận tốc không đổi. Khi từ B trở về A, ô tô tăng vận tốc thêm 10 km/h. Biết thời gian ô tô đi từ B về A ít hơn thời gian đi từ A đến B là 2 giờ. Tính vận tốc ô tô lúc đi từ A đến B. 2. Cho Parabol (P): y = x2 và đường thẳng (d): y = (m + 4)x – 4m. a) Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt. b) Tìm tọa độ giao điểm của (d) và (P) khi m = -2. 3. Cho đường tròn (O; R) và dây AB cố định không đi qua tâm. Trên tia đối của tia AB lấy điểm C (C khác A). Từ C kẻ hai tiếp tuyến CM và CN với đường tròn (O) (M và N là các tiếp điểm; tia CO nằm giữa hai tia CM và CA). Gọi D là trung điểm của AB. a) Chứng minh tứ giác CMOD nội tiếp. b) Chứng minh: CN2 = CA.CB c) ND cắt (O) tại I. Chứng minh: MI // AB. d) Gọi E là giao điểm của MN và AB. Chứng minh. Hy vọng các em sẽ tự tin và thành công trong kỳ thi này. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra đánh giá chất lượng giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc 100% tự luận với 05 bài toán, thời gian học sinh làm bài 90 phút; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất phải làm 800 sản phẩm trong một thời gian nhất định. Nhưng khi thực hiện do cải tiến kĩ thuật nên tổ I làm vượt mức 15% còn tổ II làm vượt mức 10% so với kế hoạch, vì vậy trong thời gian quy định cả hai tổ đã làm được 899 sản phẩm. Tính số sản phẩm mỗi tổ phải làm theo kế hoạch. + Cho đường tròn (O;R) và một điểm S nằm ngoài đường tròn. Từ điểm S vẽ hai tiếp tuyến SA, SB với (O) (A, B là các tiếp điểm). 1) Chứng minh tứ giác OASB là tứ giác nội tiếp. 2) Kẻ đường kính BD của đường tròn (O). Đường thẳng SD cắt đường tròn (O) tại điểm C (C khác D). Chứng minh rằng SA.SB = SC.SD. 3) Gọi I là giao điểm của hai đoạn thẳng SO và AB. Tia CI cắt đường tròn (O) tại điểm thứ hai là M. Chứng minh tam giác SCI đồng dạng với tam giác SOD và ba điểm A, O, M là ba điểm thẳng hàng. + Cho các số thực không âm x, y thỏa mãn (x + 1)(y + 1) = 5. Tìm giá trị lớn nhất của biểu thức P = x2 + y2.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Yên Nghĩa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Yên Nghĩa, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Yên Nghĩa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Nếu hai vòi nước cùng chảy vào một bể không có nước thì sau 6 giờ sẽ đầy bể. Nếu mở vòi thứ nhất trong 3 giờ rồi khóa lại và mở vòi thứ hai trong 2 giờ thì cả hai vòi chảy được 2/5 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể? + Một cầu trượt trong công viên có độ dốc là 28 độ và có độ cao là 2,1m. Tính độ dài của mặt cầu trượt (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho điểm A nằm bên ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn đó (B, C là các tiếp điểm). Gọi H là trung điểm của AB. Đường thẳng HC cắt đường tròn (O) tại K (K khác C). a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh HB2 = HK.HC c) Gọi M là điểm đối xứng với K qua H. Chứng minh MO là tia phân giác của góc BMC.
Đề giữa kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; đề thi hình thức 100% tự luận, thời gian làm bài 90 phút. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô chạy xuôi dòng 63km và ngược dòng 30km hết tất cả 5 giờ. Nếu cũng trên khúc sông đó, ca nô chạy xuôi dòng 42km và chạy ngược dòng 45km thì sẽ hết 5 giờ. Tính vận tốc thực của ca nô và vận tốc của dòng nước. + Cho hệ phương trình. a) Giải hệ phương trình với m = -5. b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x – y = 1. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trong tam giác ABC vẽ các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tứ giác AEHF nội tiếp 2) Chứng minh AF.AB = AC.AE 3) Gọi I, K lần lượt là hình chiếu của D trên HB và HC. Chứng minh IK // EF và IK vuông góc AO.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Đoàn Thị Điểm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Đoàn Thị Điểm, quận Nam Từ Liêm, thành phố Hà Nội (mã đề 002). Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Đoàn Thị Điểm – Hà Nội : + Giải bài toán sau bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ? + Cho đường tròn (O) đường kính AB và điểm E nằm giữa O và A. Kẻ dây MN vuông góc với AB tại E. Trên cung nhỏ BM lấy điểm C bất kì (C khác B và M). Kẻ MF vuông góc với BC tại F. Đường thẳng NC cắt MF tại D. a) Chứng minh tứ giác BEMF là tứ giác nội tiếp. b) Chứng minh EF song song với CN và tam giác BMD là tam giác cân. c) Tìm vị trí của điểm C để diện tích tam giác BND lớn nhất. + Cho các số thực dương a, b, c thỏa mãn a + b + c = 4. Tìm giá trị nhỏ nhất của biểu thức P = (a + b)/abc.