Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình chữ nhật

Tài liệu gồm 31 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông. Tính chất: + Hình chữ nhật có tất cả các tính chất của hình bình hành. + Hình chữ nhật có tất cả các tính chất của hình thang cân. + Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có ba góc vuông là hình chữ nhật. + Hình thang cân có một góc vuông là hình chữ nhật. + Hình bình hành có một góc vuông là hình chữ nhật. + Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật. Áp dụng vào tam giác vuông: + Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. + Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC + Dạng 1: Chứng minh tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật. + Dạng 2: Áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình chữ nhật. + Dạng 3: Vận dụng định lý thuận và định lý đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. Phương pháp giải: Sử dụng định lí về tính chất đường trung tuyến ứng với cạnh huyền cả tam giác vuông để chứng minh các hình bằng nhau hoặc chứng minh tam giác vuông. + Dạng 4: Tìm điều kiện để tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình chữ nhật. B. DẠNG BÀI NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY + Tính chất và dấu hiệu nhận biết của hình chữ nhật. + Tính chất đường trung tuyến của tam giác vuông. + Đường thẳng song song với một đường thẳng cho trước. C. PHIẾU TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh tứ giác là hình chữ nhật. + Dạng 2. Vận dụng tính chất của hình chữ nhật để chứng minh các tính chất hình học. + Dạng 3. Sử dụng định lí thuận và đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. + Dạng 4. Tìm điều kiện để tứ giác là hình chữ nhật. + Dạng 5. Tổng hợp.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức
Nội dung Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức Bản PDF - Nội dung bài viết Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức Tài liệu bao gồm 13 trang, tập trung vào lý thuyết quan trọng cần nắm vững, cách phân loại và hướng dẫn cách giải các dạng toán liên quan đến nhân đơn thức với đa thức, nhân đa thức với đa thức. Ngoài ra, tài liệu cũng chọn lọc các bài tập từ dễ đến khó trong chuyên đề này, kèm theo đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về chương trình Đại số 8 chương 1: Phép nhân và phép chia đa thức. TRỌNG TÂM CẦN ĐẠT I. Lý thuyết 1. Nhân đơn thức với đa thức: Để nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức và sau đó cộng các tích lại với nhau. 2. Nhân đa thức với đa thức: Để nhân một đa thức với một đa thức, ta nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia, sau đó cộng các tích lại với nhau. II. Các dạng bài tập + Dạng 1: Thực hiện phép tính. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để giải các bài tập. + Dạng 2: Tìm giá trị của x dựa trên điều kiện cho trước. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để tìm giá trị của x. NÂNG CAO PHÁT TRIỂN TƯ DUY Phần này tập trung vào việc giúp học sinh phát triển trí tuệ và tư duy logic thông qua việc giải các bài tập nâng cao trong chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức. PHIẾU BÀI TẬP TỰ LUYỆN + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm giá trị của một biểu thức chưa biết. + Dạng 3: Tính giá trị của một biểu thức đã biết. + Dạng 4: Chứng minh giá trị của một biểu thức không phụ thuộc vào biến. + Dạng 5: Bài toán nâng cao.
Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Nội dung Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Bản PDF - Nội dung bài viết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Trên thực tế, khi chúng ta phân tích đa thức thành nhân tử, đôi khi cần phải kết hợp nhiều phương pháp để có thể phân tích triệt để. Có nhiều phương pháp thông thường mà chúng ta có thể áp dụng, bao gồm: Phương pháp ưu tiên số một: Đặt nhân tử chung. Khi sử dụng phương pháp này, chúng ta cố gắng tìm một nhân tử chung cho các hạng tử của đa thức để dễ dàng phân tích. Phương pháp ưu tiên số hai: Sử dụng hằng đẳng thức. Chúng ta có thể sử dụng hằng đẳng thức để phân tích đa thức thành nhân tử, giúp quá trình phân tích trở nên hiệu quả hơn. Nhóm các hạng tử. Khi chúng ta nhóm các hạng tử lại với nhau, việc phân tích trở nên dễ dàng hơn bằng cách đặt nhân tử chung hoặc sử dụng hằng đẳng thức. Ngoài ra, chúng ta cũng có thể áp dụng các phương pháp nâng cao khác như: Tách một hạng tử thành nhiều hạng tử. Bằng cách này, chúng ta có thể tách một hạng tử thành nhiều hạng tử để dễ dàng phân tích đa thức thành nhân tử. Thêm và bớt cùng một hạng tử. Đôi khi, chúng ta cần tăng thêm hoặc bớt đi các hạng tử để phân tích đa thức, giúp quá trình phân tích trở nên linh hoạt hơn. Đổi biến. Khi gặp đa thức phức tạp, chúng ta có thể sử dụng cách đổi biến để đơn giản hóa đa thức trước khi phân tích thành nhân tử. Thông qua việc kết hợp các phương pháp phân tích, chúng ta có thể giải quyết các bài toán phức tạp và hiệu quả hơn trong quá trình học Toán lớp 8.
Lý thuyết và bài tập chuyên đề tứ giác Nguyễn Tất Thu
Nội dung Lý thuyết và bài tập chuyên đề tứ giác Nguyễn Tất Thu Bản PDF - Nội dung bài viết Lý thuyết và bài tập chuyên đề tứ giác của thầy Nguyễn Tất Thu Lý thuyết và bài tập chuyên đề tứ giác của thầy Nguyễn Tất Thu Tài liệu này gồm 32 trang, được biên soạn bởi thầy giáo Nguyễn Tất Thu, chuyên tập trung vào lý thuyết và bài tập chuyên đề tứ giác. Được thiết kế nhằm hỗ trợ học sinh hiểu rõ hơn về chương trình Hình học 8 chương 1, bao gồm những nội dung sau: Bài 1: Tứ giác Tứ giác Tứ giác lồi Bài 2: Hình thang Hình thang Hình thang cân Đường trung bình của tam giác Đường trung bình của hình thang Bài 3: Hình bình hành Định nghĩa Tính chất Dấu hiệu nhận biết Bài 4: Hình chữ nhật Định nghĩa Tính chất Bài 5: Hình thoi Định nghĩa Tính chất Dấu hiệu nhận biết Bài 6: Hình vuông Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về tứ giác và các hình khối khác, từ đó cải thiện kỹ năng giải bài tập và hiểu rõ hơn về các vấn đề trong Hình học.
Tài liệu tự học lớp 8 môn Toán Nguyễn Chín Em
Nội dung Tài liệu tự học lớp 8 môn Toán Nguyễn Chín Em Bản PDF - Nội dung bài viết Tài liệu học tập Toán lớp 8: Sự cần thiết trong giai đoạn học tập tại nhà Tài liệu học tập Toán lớp 8: Sự cần thiết trong giai đoạn học tập tại nhà Trong thời gian học sinh lớp 8 phải ở nhà do tình hình dịch bệnh Covid-19, việc tự học trở thành một phần quan trọng để giữ cho kiến thức không bị gián đoạn. Để hỗ trợ các em trong việc tự học Toán lớp 8 tại nhà, Sytu đã biên soạn tài liệu học tập Toán lớp 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm. Tài liệu này bao gồm 483 trang với đầy đủ kiến thức và hướng dẫn giải bài tập về Đại số và Hình học. Đầu tiên, tài liệu bắt đầu với phần Đại số, bao gồm chương về phép nhân và phép chia đa thức, phân thức đại số, phương trình bậc nhất, bất phương trình bậc nhất, các phương pháp chứng minh bất đẳng thức, và cách tìm giá trị cực trị của một biểu thức. Sau đó, phần Hình học bao gồm các chương về từ giác, đa giác, diện tích đa giác, tam giác đồng dạng, hình lăng trụ đứng, mặt phẳng trong không gian, quan hệ song song và các bài toán cực trị hình học. Tài liệu này không chỉ cung cấp kiến thức mà còn hướng dẫn cách giải bài tập một cách chi tiết và dễ hiểu. Điều này giúp học sinh tự tin tự học tại nhà mà không cần sự hướng dẫn của giáo viên. Với cách biên soạn và sắp xếp rõ ràng, tài liệu tự học Toán lớp 8 của Nguyễn Chín Em sẽ giúp học sinh lớp 8 nắm vững kiến thức và hoàn thiện kỹ năng giải toán.