Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình chữ nhật

Tài liệu gồm 31 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông. Tính chất: + Hình chữ nhật có tất cả các tính chất của hình bình hành. + Hình chữ nhật có tất cả các tính chất của hình thang cân. + Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Dấu hiệu nhận biết: + Tứ giác có ba góc vuông là hình chữ nhật. + Hình thang cân có một góc vuông là hình chữ nhật. + Hình bình hành có một góc vuông là hình chữ nhật. + Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật. Áp dụng vào tam giác vuông: + Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. + Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CB – NC + Dạng 1: Chứng minh tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng các dấu hiệu nhận biết để chứng minh một tứ giác là hình chữ nhật. + Dạng 2: Áp dụng tính chất hình chữ nhật để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và các tính chất về cạnh, góc và đường chéo của hình chữ nhật. + Dạng 3: Vận dụng định lý thuận và định lý đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. Phương pháp giải: Sử dụng định lí về tính chất đường trung tuyến ứng với cạnh huyền cả tam giác vuông để chứng minh các hình bằng nhau hoặc chứng minh tam giác vuông. + Dạng 4: Tìm điều kiện để tứ giác là hình chữ nhật. Phương pháp giải: Vận dụng định nghĩa, các tính chất và dấu hiệu nhận biết của hình chữ nhật. B. DẠNG BÀI NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY + Tính chất và dấu hiệu nhận biết của hình chữ nhật. + Tính chất đường trung tuyến của tam giác vuông. + Đường thẳng song song với một đường thẳng cho trước. C. PHIẾU TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh tứ giác là hình chữ nhật. + Dạng 2. Vận dụng tính chất của hình chữ nhật để chứng minh các tính chất hình học. + Dạng 3. Sử dụng định lí thuận và đảo của đường trung tuyến ứng với cạnh huyền của tam giác vuông. + Dạng 4. Tìm điều kiện để tứ giác là hình chữ nhật. + Dạng 5. Tổng hợp.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tứ giác bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tứ giác bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.
Chuyên đề tính giá trị biểu thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tính giá trị biểu thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.
Chuyên đề tìm GTLN - GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề tìm GTLN – GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8. I. LÝ THUYẾT 2. II. MỘT SỐ PHƯƠNG PHÁP CƠ BẢN 3. Phương pháp 1. Sử dụng phép biến đổi đồng nhất 3. + Dạng 1. Tìm GTNN và GTLN của đa thức bậc hai đơn giản 3. + Dạng 2. Tìm GTNN và GTLN của đa thức bậc bốn đơn giản 10. + Dạng 3. Tìm GTNN và GTLN của biểu thức dạng A/B 14. + Dạng 4. Tìm min – max của biểu thức có điều kiện của biến 31. + Dạng 5. Sử dụng các bất đẳng thức cơ bản 41. + Dạng 6. Tìm min – max bằng cách sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối 44. Phương pháp 2. Phương pháp chọn điểm rơi 47. Phương pháp 3. Sử dụng phương pháp đặt biến phụ 53. Phương pháp 4. Sử dụng biểu thức phụ 56. Phương pháp 5. Phương pháp miền giá trị 59. Phương pháp 6. Phương pháp xét từng khoảng giá trị 61. Phương pháp 7. Phương pháp hình học 64.
Chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 45 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Phương trình có hệ số đối xứng. Dạng 2. Phương trình dạng x a x b x c x d k. Dạng 3. Phương trình đưa được về dạng phương trình trùng phương. Dạng 4. Giải phương trình bằng cách đặt ẩn phụ. Dạng 5. Nhẩm nghiệm đưa về phương trình tích. Dạng 6. Phương trình bậc cao. Dạng 7. Phương trình chứa ẩn ở mẫu. Dạng 8. Phương trình chứa dấu giá trị tuyệt đối.