Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán cấp trường năm 2018 2019 trường THCS Sông Trí Hà Tĩnh

Nội dung Đề học sinh giỏi lớp 8 môn Toán cấp trường năm 2018 2019 trường THCS Sông Trí Hà Tĩnh Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 cấp trường năm học 2018 - 2019 trường THCS Sông Trí Hà Tĩnh Đề học sinh giỏi Toán lớp 8 cấp trường năm học 2018 - 2019 trường THCS Sông Trí Hà Tĩnh Chào các quý thầy cô và các em học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến các bạn đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 8 cấp trường năm học 2018 - 2019 của trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh. Đề thi này không chỉ có các câu hỏi thú vị mà còn có lời giải chi tiết và thang chấm điểm để các em đối chiếu và tự kiểm tra kết quả học tập của mình. Để thử sức với đề thi này, hãy cùng nhau giải những bài toán thú vị sau: Đề bài 1: Cho tứ giác ABCD có mỗi góc A đều 100 độ và góc B đều 120 độ. Các tia phân giác của góc C và góc D cắt nhau tại điểm E. Các tia phân giác của các góc ngoài tại C và D cắt nhau tại điểm F. Hãy tính các góc E và F của tứ giác DECF. Đề bài 2: Cho tam giác ABC và các điểm D, E, F chia các cạnh theo tỷ số nhất định. Chứng minh rằng đoạn thẳng nối hai điểm trên các đoạn thẳng này là song song với cạnh tam giác. Đề bài 3: Xét đa thức f(x) khi chia cho x + 1 có số dư là 2 và khi chia cho x - 2 có số dư là 5. Hỏi khi chia f(x) cho x^2 sẽ có số dư bao nhiêu? Với những bài toán này, hãy tích cực giải và suy nghĩ cùng nhau để phát huy tối đa khả năng giải quyết vấn đề của mình. Chúc các em thành công và may mắn!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Khi chia đa thức f(x) cho các đa thức x − 2 và x − 3 thì được dư lần lượt là 5 và 7. Nếu chia đa thức f(x) cho 2 x x 5 6 thì được thương là 2 x 1. Tìm đa thức f(x)? Cho dãy số viết theo quy luật như sau: 5; 7; 11; 19; …. Viết biểu thức biểu diễn số hạng thứ n của dãy số trên? + Xã A tổ chức giải giao hữu bóng đá theo hình thức thi đấu vòng tròn một lượt. Mỗi trận đấu, đội thắng được tính 3 điểm, đội hòa được tính 1 điểm và đội thua không có điểm nào. Kết thúc giải, Ban tổ chức nhận thấy số trận thắng gấp ba số trận hòa và tổng số điểm của các đội là 330 điểm. Hỏi có tất cả bao nhiêu đội tham gia? + Mảnh vườn có dạng hình thang biết độ dài hai đáy lần lượt là 5m, 15m và độ dài hai đường chéo lần lượt là 16m và 12m. Tính diện tích mảnh vườn trên? Cho tam giác ABC có trung tuyến AM. Đường thẳng bất kỳ đi qua trọng tâm G cắt các cạnh AB và AC thứ tự tại E và F. Tính giá trị của biểu thức AB AC AE AF.
Đề Olympic 27 tháng 04 Toán 8 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic 27 tháng 04 môn Toán 8 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 23 tháng 03 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic 27 tháng 04 Toán 8 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho tam giác ABC vuông tại A (AB AC) có đường cao AH và đường phân giác AM. Kẻ ME vuông góc với AB tại E và MF vuông góc với AC tại F. Gọi K là giao điểm của AH và ME. Tia BK cắt AC tại L. 1) Chứng minh CM CH CF CA và HF là tia phân giác của góc AHC. 2) Chứng minh tam giác BML cân. 3) Chứng minh BE HB CF HC. + Cho góc xOy nhọn và điểm A cố định nằm trong góc xOy. Đường thẳng d di động đi qua A và cắt Ox Oy theo thứ tự tại B C. Tìm điều kiện của đường thẳng d đối với OA để 1 1 AB AC đạt giá trị lớn nhất. + Tìm tất cả các số nguyên dương n sao cho 2 n 2020 chia hết cho n 45. Cho x và y là các số hữu tỉ khác 1 và thỏa mãn 1 2 1 2 1 1 1 x y x y.
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Lang Chánh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lang Chánh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 01 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Lang Chánh – Thanh Hóa : + Giải phương trình nghiệm nguyên dương: 2 2 x y xy 3. Cho x y là các số nguyên thỏa mãn đẳng thức 2 2 3 12 1 x y. Chứng minh rằng 2 2 x y chia hết cho 40. + Cho đoạn thẳng AB. Kẻ tia Bx vuông góc với AB tại B. Trên tia Bx lấy điểm C (C khác B). Kẻ BH vuông góc với AC (điểm H thuộc AC). Gọi M là trung điểm của AB. 1. Chứng minh rằng: HA.HC = HB2 2. Kẻ HD vuông góc với BC (D thuộc BC). Gọi I là giao điểm của AD và BH. Chứng minh rằng ba điểm C, I, M thẳng hàng. 3. Giả sử AB cố định, điểm C thay đổi trên tia Bx. Biết 1 BM AB HA CH IC MI. Tìm vị trí của điểm C trên tia Bx sao cho diện tích tam giác ABI lớn nhất. + Cho các số abc không âm thỏa mãn abc 3. Tìm giá trị nhỏ nhất của biểu thức 333.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Đông Hưng - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn nguồn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đông Hưng, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Đông Hưng – Thái Bình : + Cho x, y, z thoả mãn: 2 2 2 2x 4y z 4xy 4x 2z 5 0. Tính giá trị của biểu thức: x 20 2023 Q 10 y z. + Tìm đa thức dư khi chia đa thức f (x) cho 2 x x 6 biết đa thức f (x) chia cho (x 2) dư (-12); đa thức f (x) chia cho (x 3) dư 28. + Cho hình vuông ABCD có cạnh bằng a, gọi O là giao điểm của hai đường chéo. Trên cạnh AB lấy điểm I, trên cạnh BC lấy điểm M sao cho 0 IOM 90 (I và M không trùng với các đỉnh hình vuông). Gọi N là giao điểm của AM và DC, K là giao điểm của OM và BN. a) Chứng minh rằng: BI CM và tính diện tích tứ giác BIOM theo a. b) Chứng minh rằng: IM // BN và OM.MK MB.MC. c) Trên cạnh DC lấy điểm E sao cho 0 MAE 45. Chứng minh chu vi tam giác CME không đổi khi điểm I di chuyển trên cạnh AB và luôn có 0 IOM 90.