Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm thể tích khối đa diện - Nguyễn Đại Dương

Tài liệu gồm 57 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề khối đa diện và thể tích có đáp án. A. LÝ THUYẾT I. Khối đa diện 1. Khái niệm Hình H cùng với các điểm nằm trong H được họi là khối đa diện giới hạn bởi hình H. Khối đa diện được giới hạn bởi một hình gồm những đa giác phẳng thỏa mãn hai điều kiện: + Hai đa giác bất kì hoặc không có điểm chung hoặc có một đỉnh chung hoặc có một cạnh chung. + Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác. 2. Khối đa diện đều Khối đa diện lồi: Một khối đa diện được gọi là khối đa diện lồi nếu với bất kì hai điểm A và B nào của nó thì mọi điểm thuộc đoạn thẳng AB cũng thuộc khối đó. Khối đa diện đều: Khối đa diện đều là khối đa diện lồi có hai tính chất sau: + Các mặt là các đa giác đều có cùng số cạnh. + Mổi đỉnh là đỉnh chung của cùng một số cạnh. [ads] II. Thể tích khối đa diện 1. Thể tích khối chóp: Thể tích của một khối chóp bằng một phần ba tích số của diện tích đáy và chiều cao của khối chóp đó. 2. Thể tích lăng trụ – hình hộp: Thể tích của một khối lăng trụ bằng tích số của diện tích mặt đáy và chiều cao của lăng trụ đó. 3. Công thức tỉ số thể tích: Cho hình chóp S.ABC có A’, B’ và C’ lần lượt nằm trên các cạnh SA, SB và SC. Khi đó tỉ số thể tích giữa khối chóp S.A’B’C’ và khối chóp S.ABC có công thức: V/V’ = SA/S’A’.SB/S’B.SC/S’C. III. Các công thức thường dùng 1. Hệ thức lượng trong tam giác vuông 2. Hệ thức lượng trong tam giác thường 3. Diện tích của đa giác thông thường 4. Xác định chiều cao của hình chóp a. Hình chóp có một cạnh bên vuông góc với đáy: Chiều cao của hình chóp là độ dài cạnh bên vuông góc với đáy. b. Hình chóp có 1 mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. c. Hình chóp có 2 mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. d. Hình chóp đều: Chiều cao của hình chóp là đoạn thẳng nối đỉnh và tâm của đáy. Đối với hình chóp đều đáy là tam giác thì tâm là trọng tâm G của tam giác đều. B.TRẮC NGHIỆM KHÁCH QUAN CÓ ĐÁP ÁN

Nguồn: toanmath.com

Đọc Sách

Câu hỏi và bài tập trắc nghiệm chuyên đề số phức - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 62 trang phân dạng và tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án và lời giải chi tiết, tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. TỔNG HỢP KIẾN THỨC 1. Khái niệm số phức 2. Hai số phức bằng nhau 3. Biểu diễn hình học số phức 4. Phép cộng và phép trừ số phức 5. Phép nhân số phức 6. Số phức liên hợp 7. Môđun của số phức 8. Chia hai số phức 9. Lũy thừa đơn vị ảo i 10. Phương trình bậc hai với hệ số thực [ads] CÂU HỎI TRẮC NGHIỆM + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức + Vấn đề 13. Tổng hợp LỜI GIẢI CHI TIẾT
Các dạng toán và bài tập số phức có lời giải chi tiết - Nguyễn Bảo Vương
Tài liệu gồm 128 trang tóm tắt lý thuyết, phân dạng toán và tuyển tập các bài toán trắc nghiệm, tự luận về chuyên đề số phức trong chương trình Giải tích 12 chương 3, các bài toán đều có đáp án và lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. Các dạng toán về số phức: + Dạng 1. Các phép tính về số phức và các bài toán định tính + Dạng 2. Biểu diễn hình học của số phức và ứng dụng + Dạng 3. Căn bậc hai của số phức và phương trình bậc hai + Dạng 4. Phương trình quy về bậc hai + Dạng 5. Dạng lượng giác của số phức + Dạng 6. Cực trị của số phức [ads] Các dạng bài tập: + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức
Bài tập trắc nghiệm tổng ôn số phức - Đoàn Trí Dũng
Tài liệu gồm 14 trang tuyển tập 150 bài tập trắc nghiệm tổng ôn số phức có đáp án chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Gọi z1, z2 là hai nghiệm của phương trình 2z^2 − 3z + 7 = 0. Tính giá trị của biểu thức z1 + z2 − z1.z2? + Gọi M là điểm biểu diễn của số phức z = 3 − 4i và M’ là điểm biểu diễn của số phức z’ = (1 + i)/2.z trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM’. + Giả sử A, B, C lần lượt là các điểm biểu diễn trên mặt phẳng phức của các số phức z1 = 1 + i, z2 = (1 + i)^2, z3 = a − i trong đó a ∈ Z. Để tam giác ABC vuông tại B thì giá trị của a là? + Cho các số phức a, b, c đôi một phân biệt và lần lượt có các điểm biểu diễn là A, B, C trong mặt phẳng tọa độ Oxy. Nếu (a − c)/(b − c) là một số thực thì mệnh đề nào sau đây đúng? [ads] A. A, B, C là ba đỉnh một tam giác B. A, B, C là ba điểm thẳng hàng C. A, B, C cùng nằm trên một đường tròn D. A, B, C là ba trong bốn đỉnh một hình vuông + Điểm M trong hình vẽ là điểm biểu diễn số phức z. Khi đó phần thực và phần ảo của số phức z là: A. Phần thực bằng 4 và phần ảo bằng -2 B. Phần thực bằng -2 và phần ảo bằng 4 C. Phần thực bằng -4 và phần ảo bằng 2 D. Phần thực bằng 2 và phần ảo bằng 4
Bài tập trắc nghiệm chuyên đề số phức - Lương Văn Huy
Tài liệu gồm 25 trang tóm tắt lý thuyết, công thức tính toán số phức và 142 bài tập trắc nghiệm chuyên đề số phức chọn lọc. Nội dung tài liệu: A. ĐỊNH NGHĨA VÀ CÁC PHÉP TOÁN SỐ PHỨC 1. Khái niệm số phức Là biểu thức có dạng a + bi, trong đó a, b là những số thực và số i thoả i^2 = –1 Kí hiệu là z = a + bi với a là phần thực, b là phần ảo, i là đơn vị ảo Tập hợp các số phức kí hiệu là C = {a + bi / a, b ∈ R và i^2 = –1}. Ta có R ⊂ C Số phức có phần ảo bằng 0 là một số thực: z = a + 0.i = a ∈ R ⊂ C Số phức có phần thực bằng 0 là một số ảo: z = 0.a + bi = bi. Đặc biệt i = 0 + 1.i Số 0 = 0 + 0.i vừa là số thực vừa là số ảo 2. Số phức bằng nhau Cho hai số phức z = a + bi và z’ = a’ + b’i . Ta có z = z ⇔ a = a’ và b = b’ 3. Biểu diễn hình học của số phức Mỗi số phức z = a + bi được xác định bởi cặp số thực (a; b) Trên mặt phẳng Oxy, mỗi điểm M(a; b) được biểu diễn bởi một số phức và ngược lại Mặt phẳng Oxy biểu diễn số phức được gọi là mặt phẳng phức. Gốc tọa độ O biểu diễn số 0, trục hoành Ox biểu diễn số thực, trục tung Oy biểu diễn số ảo [ads] 4. Môđun của số phức Số phức z = a + bi được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Độ dài của véctơ OM được gọi là môđun của số phức z 5. Số phức liên hợp Cho số phức z = a + bi, số phức liên hợp của z là a – bi 6. Cộng, trừ số phức Số đối của số phức z = a + bi là –z = –a – bi Cho z = a + bi và z’ = a’ + b’i. Ta có z ± z’ = (a ± a’) + (b ± b’)i Phép cộng số phức có các tính chất như phép cộng số thực 7. Phép nhân số phức Cho hai số phức z = a + bi và z’ = a’ + b’i. Nhân hai số phức như nhân hai đa thức rồi thay i^2 = –1 và rút gọn, ta được: z.z’ = a.a’ – b.b’ + (a.b’ + a’.b)i Phép nhân số phức có các tính chất như phép nhân số thực 8. Phép chia số phức 9. Lũy thừa của đơn vị ảo B. CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI 1. Căn bậc hai của số phức Cho số phức w, mỗi số phức z = a + bi thoả z^2 = w được gọi là căn bậc hai của w Mỗi số phức đều có hai căn bậc hai đối nhau (Tổng quát: Căn bậc n của số phức luôn có n giá trị) 2. Phương trình bậc hai Phương trình bậc hai với hệ số a, b, c là số thực Phương trình bậc hai với hệ số phức C. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 1. Số phức dưới dạng lượng giác a. Acgumen của số phức z ≠ 0 Cho số phức z = a + bi ≠ 0 được biểu diễn bởi điểm M(a; b) trên mặt phẳng Oxy. Số đo φ = (Ox, OM) (rađian) được gọi là một acgumen của z Mọi acgumen của z sai khác nhau là k2p tức là có dạng φ + k2p (k ∈ Z) (z và nz sai khác nhau k2p với n là một số thực khác 0) b. Dạng lượng giác của số phức z = a + bi Dạng lượng giác của số phức z ≠ 0 là z = r(cosφ + isinφ) với φ là một acgumen của z c. Nhân, chia số phức dưới dạng lượng giác 2. Công thức Moa–vrơ (Moivre) và ứng dụng D. BÀI TẬP TRẮC NGHIỆM SỐ PHỨC