Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng

Tài liệu gồm 13 trang, được biên soạn bởi tác giả Hoàng Xuân Bính (giáo viên Toán trường THPT chuyên Biên Hòa, Hà Nam), hướng dẫn phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng. Trong bài toán thuộc chủ đề khoảng cách thì ta thấy thường xuất hiện bài toán tính khoảng cách giữa hai đường thẳng chéo nhau. Do đó, mình viết chuyên đề này để giúp các thầy cô và các em học sinh có một hướng tiếp cận khi giải quyết bài toán này. I. Kiến thức cơ bản cần nhớ II. Nội dung chuyên đề Để giúp học sinh và các thầy cô có một cách tiếp cận về loại bài tập này, tôi xin trình bày: Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường với mặt. a) Phương pháp: Để tính khoảng cách giữa hai đường thẳng chéo nhau trong chuyên đề này, chúng ta sử dụng phương pháp đường song song với mặt: Cho a, b là hai đường thẳng chéo nhau thì ta luôn có: d(a;b) = d(a;(P)) với b ⊂ P và a // (P). b) Các tính chất hình học phẳng thường được sử dụng: – Loại 1: Khai thác tính chất hình bình hành (hoặc trong các hình hình thoi, hình chữ nhật, hình vuông): Trong một hình bình hành thì hai cặp cạnh đối diện luôn song song với nhau. – Loại 2: Khai thác tính chất đường trung bình của tam giác. Chú ý: + Để khai thác tính chất đường trung bình trong tam giác, ta chú ý tới các yếu tố trung điểm có sẵn trong đề bài từ đó xây dựng thêm một trung điểm mới để thiết lập đường trung bình từ đó xác định được yếu tố song song mà ta sẽ chuyển đổi được khoảng cách giữa đường với đường về đường với mặt. + Với bài toán có liên quan tới bài toán về hình hộp hoặc lăng trụ tam giác thì ta chú ý một tính chất quen thuộc của lăng trụ là: tâm của các mặt bên cũng chính là trung điểm của hai đường chéo của mặt bên đó. III. Bài tập minh họa Trong chuyên đề này, tôi xin chia các bài toán áp dụng được phương pháp này thành 2 dạng: + Dạng 1. Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về hình chóp. + Dạng 2: Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về lăng trụ. IV. Bài tập tự luyện

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khối đa diện và thể tích của chúng - Phạm Hoàng Long
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, tóm tắt lý thuyết, công thức cần ghi nhớ và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích của chúng, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu chuyên đề khối đa diện và thể tích của chúng – Phạm Hoàng Long: Bài 1 . Khối đa diện. 1. Các định nghĩa. 2. Cách tính thể tích khối đa diện. 3. Nhắc lại kiến thức cũ. 3.1. Hệ thức trong tam giác. 3.2. Diện tích một số hình phẳng. 4. Các dạng bài tập nhận diện khối đa diện. + Dạng 1. Nhận diện các khối đa diện. + Dạng 2. Tính chất đối xứng của hình đa diện. + Dạng 3. Các tính chất khác của đa diện. + Dạng 4. Phân chia, lắp ghép khối đa diện. Bài 2 . Hình chóp. 1. Định nghĩa hình chóp. 2. Công thức. 3. Các dạng toán hình chóp. + Dạng 1. Khối chóp có một cạnh bên vuông góc với đáy. + Dạng 2. Khối chóp có một mặt bên vuông góc với đáy. + Dạng 3. Khối chóp đều. 3.1. Khối chóp tứ giác đều. 3.2. Khối chóp tam giác đều. 3.3. Các khối chóp đa giác đều khác. + Dạng 4. Khối tứ diện. + Dạng 5. Khối chóp khác. + Dạng 6. Tỉ lệ thể tích trong hình chóp. [ads] Bài 3 . Hình lăng trụ. 1. Định nghĩa hình lăng trụ. 2. Các dạng toán hình lăng trụ. + Dạng 1. Hình lập phương. + Dạng 2. Hình hộp chữ nhật. + Dạng 3. Lăng trụ đứng đáy tứ giác. 3.1. Đáy hình vuông. 3.2. Đáy hình bình hành – hình thoi. + Dạng 4. Lăng trụ đứng đáy tam giác. 4.1. Đáy tam giác thường. 4.2. Đáy tam giác vuông cân. 4.3. Đáy tam giác vuông. 4.4. Đáy tam giác đều. 4.5. Đáy tam giác cân. + Dạng 5. Hình hộp. + Dạng 6. Khối lăng trụ xiên. + Dạng 7. Tỉ lệ khối lăng trụ. Bài 4 . Ứng dụng và max – min (GTLN – GTNN).
Thể tích khối đa diện phức hợp (VDC) - Đặng Việt Đông
Tài liệu gồm 52 trang, được tổng hợp bởi thầy Đặng Việt Đông, hướng dẫn giải bài toán thể tích khối đa diện phức hợp, đây là một lớp bài toán vận dụng cao (VDC) thường gặp trong đề thi thử tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Thể tích khối đa diện: Thể tích khối chóp, Thể tích khối lăng trụ, Thể tích khối lập phương, Thể tích khối hộp chữ nhật. 2. Thể tích khối đa diện được phân chia: Khối chóp tam giác, Khối chóp tứ giác có đáy là hình hành, Thể tích khối lăng trụ tam giác, Khối hộp. [ads] II. CÁC DẠNG BÀI TẬP TƯƠNG TỰ + Khối đa diện cắt ra từ một khối chóp. + Khối chóp cụt. + Khối hình hộp khác. + Khối lăng trụ khác. + Khối da diện cắt ra từ khối lăng trụ.
Tổng ôn tập TN THPT 2020 môn Toán Thể tích khối đa diện
Tài liệu gồm 50 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Thể tích khối đa diện: 1. Công thức tính thể tích khối chóp. 2. Công thức tính thể tích khối lăng trụ. + Công thức tính thể tích khối lập phương. + Công thức tính thể tích khối hộp chữ nhật. 3. Xác định diện tích đáy. 4. Xác định chiều cao. + Hình chóp có một mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. + Hình chóp có hai mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. + Hình chóp có các cạnh bên bằng nhau: Chân đường cao của hình chóp là tâm đường tròn ngoại tiếp đa giác đáy.
Tổng ôn tập TN THPT 2020 môn Toán Góc và khoảng cách trong không gian
Tài liệu gồm 47 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề góc và khoảng cách trong không gian, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Góc và khoảng cách trong không gian: CHỦ ĐỀ 1 . GÓC TRONG KHÔNG GIAN. Bài toán 1. Góc giữa đường thẳng a và đường thẳng b. + Phương pháp 1. Sử dụng song song. + Phương pháp 2. Sử dụng tích vô hướng. + Phương pháp 3. Ghép vào hệ trục tọa độ Oxyz. Bài toán 2. Góc giữa đường thẳng AB và mặt phẳng (P). + Phương pháp 1. Sử dụng kiến thức Hình học 11. + Phương pháp 2. Ghép vào hệ trục tọa độ Oxyz. [ads] Bài toán 3. Góc giữa mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 1. Dựa vào định nghĩa. + Phương pháp 2. Tìm hai đường thẳng d1 và d2 lần lượt vuông góc với mặt phẳng (P) và mặt phẳng (Q). + Phương pháp 3. Sử dụng công thức hình chiếu. + Phương pháp 4. Sử dụng công thức sin a. + Phương pháp 5. Ghép vào hệ trục tọa độ Oxyz. CHỦ ĐỀ 2 . KHOẢNG CÁCH TRONG KHÔNG GIAN. Bài toán 1. Tính khoảng cách từ chân đường cao của hình chóp đến mặt bên của hình chóp. Bài toán 2. Tính khoảng cách giữa cạnh bên và cạnh thuộc mặt đáy.