Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nhìn lại các bài toán vận dụng cao mũ - logarit

Trong đề thi THPT Quốc Gia môn Toán thì các bài toán về cực trị nói chung luôn là các bài toán ở mức độ vận dụng – vận dụng cao, phần lớn các bạn học sinh sẽ cảm thấy khó vì không nắm được những phương pháp, những kiến thức cơ bản về bất đẳng thức hay các đánh giá thuần túy. Chính vì lí do đó mà tác giả đã nảy ra ý tưởng viết một số bài viết có thể giúp được các bạn hiểu được và giải quyết các dạng toán bất đẳng thức và cực trị trong các đề thi thử và đề thi THPT Quốc Gia môn Toán. Ở tài liệu này tác giả giới thiệu cho các bạn dạng toán về cực trị của hàm số mũ – logarit với mong muốn những ai đọc đều có thể hiểu và áp dụng cho những bài toán khác phức tạp hơn hoặc có thể phát triển thêm nhiều vấn đề khác. Khái quát nội dung tài liệu nhìn lại các bài toán vận dụng cao mũ – logarit: CHƯƠNG 1 . CÁC BÀI TOÁN CỰC TRỊ MŨ – LOGARIT I. MỞ ĐẦU II. CÁC KIẾN THỨC CẦN NHỚ Để có thể làm tốt các bài toán ở chuyên đề này chúng ta cần phải nắm chắc được các kiến thức lý thuyết cơ bản về bất đẳng thức, điều kiện có nghiệm và biến đổi logarit sau: Bất đẳng thức AM – GM, Bất đẳng thức Cauchy – Schwarz, Bất đẳng thức Minkowski, Bất đẳng thức Holder, Bất đẳng thức trị tuyệt đối, Điều kiện có nghiệm của phương trình bậc 2, Tính chất hàm đơn điệu. [ads] III. CÁC DẠNG TOÁN CỰC TRỊ MŨ – LOGARIT 1. KỸ THUẬT RÚT THẾ – ĐÁNH GIÁ ĐIỀU KIỆN ĐƯA VỀ HÀM 1 BIẾN SỐ. Đây là một kỹ thuật cơ bản nhất mà khi gặp các bài toán về cực trị mà ta sẽ luôn nghĩ tới, hầu hết chúng sẽ được giải quyết bằng cách thế một biểu thức từ giả thiết xuống yêu cầu từ đó sử dụng các công cụ như đạo hàm, bất đẳng thức để giải quyết. 2. HÀM ĐẶC TRƯNG. Dạng toán này đề bài sẽ cho phương trình hàm đặc trưng từ đó ta sẽ đi tìm mối liên hệ giữa các biến và rút thế vào giả thiết thứ 2 để giải quyết yêu cầu bài toán. Nhìn chung dạng toán này ta chỉ cần nắm chắc được kỹ năng biến đổi làm xuất hiện được hàm đặc trưng kết hợp với kiến thức về đạo hàm là sẽ giải quyết được trọn vẹn. 3. CÁC BÀI TOÁN LIÊN QUAN TỚI ĐỊNH LÝ VIET. Phương pháp chung của các bài toán ở dạng này hầu hết sẽ là đưa giả thiết phương trình logarit về dạng một tam thức, sau đó sử dụng định lý viet và các phép biến đổi logarit để giải quyết bài toán. 4. CÁC BÀI TOÁN LIÊN QUAN TỚI BIỂU THỨC LOG_B A. Vấn đề được đề cập tới ở đây thực chất chỉ là những bài toán biến đổi giả thiết theo ẩn log_b a và đưa về khảo sát hàm số 1 biến đơn giản. 5. SỬ DỤNG PHƯƠNG PHÁP ĐÁNH GIÁ BẤT ĐẲNG THỨC. Đây chính là nội dung chính của chuyên đề mà tác giả muốn nhắc tới, một dạng toán lấy ý tưởng từ đề thi THPT Quốc Gia 2018 môn Toán. CHƯƠNG 2 . CÁC BÀI TOÁN LIÊN QUAN ĐẾN THAM SỐ Các bài toán chứa tham số luôn là một câu hỏi rất quan trọng trong đề thi THPT Quốc gia môn Toán, nó trải dài ở các chương như hàm số và mũ – logarit, thực chất các bài toán này bản chất đều giống nhau, chỉ khác nhau ở các phép biến đổi, và tính chất của từng phép biến đổi. Trong chương này chúng ta sẽ tìm hiểu các bài toán chứa tham số liên quan tới mũ – logarit. I. MỞ ĐẦU Ứng dụng tam thức bậc hai. Ứng dụng của đạo hàm. Bài toán 1 . Tìm m để phương trình f(x;m) = 0 có nghiệm trên D. Bài toán 2 . Tìm m để bất phương trình f(x;m) ≥ 0 hoặc f(x;m) ≤ 0 có nghiệm trên D. Bài toán 3 . Tìm tham số m để bất phương trình f(x) ≥ A(m) hoặc f(x) ≤ A(m) nghiệm đúng với mọi x thuộc D. II. CÁC BÀI TOÁN

Nguồn: toanmath.com

Đọc Sách

Phân loại dạng và phương pháp giải nhanh chuyên đề mũ và logarit - Nguyễn Vũ Minh
Tài liệu phân dạng và hướng dẫn cách giải các bài toán trắc nghiệm trong chuyên đề phương trình mũ và logarit. Nội dung tài liệu gồm các phần: + Phần I: Lũy thừa – Hàm số lũy thừa A. Lũy thừa B. Hàm số lũy thừa C. So sánh mũ – lũy thừa [ads] + Phần II: Logarit A. Công thức logarit B. Hàm số logarit C. So sánh logarit D. Đạo hàm mũ – logarit
Bài toán lãi suất và ví dụ minh họa - Trần Thông
Trong thời điểm kỳ thi THPT quốc gia đang cận kề, tôi mạnh dạn tổng hợp một số bài toán liên quan đến lãi suất ngân hàng để các bạn học sinh có thêm tài liệu ôn tập trong kỳ thi sắp tới. Mặc dù không xuất hiện trong đề thi tham khảo của bộ giáo dục và đào tạo nhưng khả năng dạng toán này xuất hiện trong đề thi chính thức không phải là không có; đối với những bài toán gắn liền với thực tế, các bạn học sinh gặp rất nhiều khó khăn trong việc tiếp cận và sử lý, hi vọng thông qua bài viết này tôi có thể giúp các bạn giải quyết được phần nào vấn đề đó. Bài viết được chia làm ba phần: [ads] + Phần 1: Giới thiệu một số bài toán liên quan đến lãi suất ngân hàng. + Phần 2: Phân tích một số kỹ năng sử lý bài toán. + Phần 3: Trình bày một số bài tập trích từ đề thi thử của một số trường THPT trên toàn quốc.
Kỹ năng sử dụng Casio giải nhanh trắc nghiệm hàm số và mũ - logarit - Lê Anh Tuấn
Tài liệu gồm 72 trang với 15 bài: + Bài 1. Tìm giá trị lớn nhất – giá trị nhỏ nhất + Bài 2. Tìm nhanh khoảng đồng biến – nghịch biến + Bài 3. Cực trị hàm số + Bài 4. Tiếp tuyến của hàm số + Bài 5. Giới hạn của hàm số + Bài 6. Tiệm cận của đồ thị hàm số + Bài 7. Bài toán tương giao giữa hai đồ thị [ads] + Bài 8. Đạo hàm + Bài 9. Tìm số nghiệm phương trình mũ – logarit (phần 1) + Bài 10. Tìm số nghiêm phương trình mũ – logarit (phần 2) + Bài 11. Tìm số nghiệm phương trình mũ – logarit (phần 3) + Bài 12. Giải nhanh bất phương trình mũ – logarit (phần 1) + Bài 13. Giải nhanh bất phương trình mũ – logarit (phần 2) + Bài 14. Tìm số chữ số của một lũy thừa + Bài 15. Tính nhanh giá trị biểu thức mũ – logarit
Phương pháp giải bài toán lãi suất ngân hàng - Mẫn Ngọc Quang
Tài liệu gồm 18 trang hướng dẫn phương pháp giải bài toán lãi suất ngân hàng và các bài tập trắc nghiệm có lời giải chi tiết. Công thức 1: (Dành cho gửi tiền một lần) Gửi vào ngân hàng số tiền là a đồng, với lãi suất hàng tháng là r% trong n tháng. Tính cả vốn lẫn lãi T sau n tháng ? Công thức 2: (Dành cho gửi tiền hàng tháng) Một người, hàng tháng gửi vào ngân hàng số tiền là a (đồng). Biết lãi suất hàng tháng là r%. Hỏi sau n tháng, người ấy có bao nhiêu tiền ? Công thức 3: Dành cho bài toán trả góp: Gọi số tiền vay là N, lãi suất là x, n là số tháng phải trả, A là số tiền phải trả vào hàng tháng để sau n tháng là hết nợ. Công thức 4: Rút sổ tiết kiệm theo định kỳ: Thực ra bài toán này giống bài 3, nhưng mình lại hiểu là ngân hàng nợ tiền của người cho vay. Trái lại so với vay trả góp. Công thức 5: Gửi tiền theo kỳ hạn 3 tháng, 6 tháng, 1 năm … [ads]