Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét

Bài toán giải và biện luận nghiệm phương trình bậc hai cùng với ứng dụng của hệ thức Vi-ét là một trong những nội dung quan trọng bậc nhất trong chương trình Đại số lớp 9, đây là dạng toán xuất hiện trong hầu hết các đề thi tuyển sinh vào lớp 10 môn Toán. Nhằm giúp các em tìm hiểu và ôn tập dạng toán này, THCS. giới thiệu đến các em tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét; tài liệu gồm có 101 trang do tác giả Trịnh Bình sưu tầm và tổng hợp. Khái quát nội dung tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét: Chủ đề 1 . Phương trình bậc hai một ẩn. 1. Kiến thức cần nhớ. 2. Bài tập vận dụng. + Dạng toán 1. Giải phương trình bậc hai một ẩn. + Dạng toán 2. Tìm điều kiện để phương trình bậc hai có nghiệm. + Dạng toán 3. Nghiệm nguyên, nghiệm hữu tỷ của phương trình bậc hai. + Dạng toán 4. Tìm giá trị của m để phương trình có hai nghiệm chung. + Dạng toán 5. Chứng minh trong một hệ các phương trình bậc hai có một phương trình có nghiệm. + Dạng toán 6. Ứng dụng của phương trình bậc hai trong chứng minh bất đẳng thức và tìm GTNN và GTLN. [ads] Chủ đề 2 . Khai thác các ứng dụng của định lý Vi-ét. A. Kiến thức cần nhớ. B. Các ứng dụng của định lý Vi-ét. + Dạng toán 1: Giải phương trình bậc hai bằng cách tính nhẩm nghiệm. + Dạng toán 2: Tính giá trị biểu thức giữa các nghiệm của phương trình. + Dạng toán 3. Tìm hia số khi biết tổng và tích. + Dạng toán 4. Phân tích tam thức tam thức bậc hai thành nhân tử. + Dạng toán 5. Tìm tham số để phương trình bậc hai có một nghiệm x = x1. Tìm nghiệm thứ hai. + Dạng toán 6. Xác định tham số để phương trình có nghiệm thỏa mãn một hệ điều kiện cho trước. + Dạng toán 7. Lập phương trình bậc hai khi biết hai nghiệm của nó hoặc hai nghiệm của nó liên quan đến hai nghiệm của một phương trình đã cho. + Dạng toán 8. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình bậc hai, không phụ thuộc vào tham số. + Dạng toán 9. Chứng minh hệ thức liên hệ giữa các nghiệm của phương trình bậc hai, hoặc hai nghiệm của phương trình bậc hai. + Dạng toán 10. Xét dấu các nghiệm của phương trình bậc hai, so sách các nghiệm của phương trình bậc hai với một số cho trước. + Dạng toán 11. Nghiệm chung của hai hay nhiều phương trình, hai phương trình tương đương. + Dạng toán 12. Ứng dụng của hệ thức Vi-ét các bài toán số học. + Dạng toán 13. Ứng dụng của hệ thức Vi-ét giải phương trình, hệ phương trình. + Dạng toán 14. Ứng dụng hệ thức vi-ét chứng minh đẳng thức, bất đẳng thức, tìm GTLN và GTNN. + Dạng toán 15. Vận dụng định lý Vi-ét vào các bài toán hàm số. + Dạng toán 16. Ứng dụng địng lý Vi-ét trong các bài toán hình học. Bài tập rèn luyện tổng hợp. Hướng dẫn giải. Bài tập không lời giải.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải bài toán bằng cách lập phương trình
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải bài toán bằng cách lập phương trình, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 8. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Các bước giải bài toán bằng cách lập phương trình: Bước 1. Lập phương trình: + Chọn ẩn số và đặt điều kiện cho ẩn số. + Biểu diễn các dữ kiện chưa biết qua ẩn số. + Lập phương trình biểu thị tương quan giữa ẩn số và các dữ kiện đã biết. Bước 2. Giải phương trình. Bước 3. Đối chiếu nghiệm của phương trình với điều kiện của ẩn số (nếu có) và với đề bài để đưa ra kết luận. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Bài toán về năng suất lao động. Năng suất được tính bằng tỉ số giữa khối lượng công việc và thời gian hoàn thành. Dạng 2 . Toán về công việc làm chung, làm riêng. Thường coi khối lượng công việc là 1 đơn vị. Năng suất 1 + Năng suất 2 = Tổng năng suất. Dạng 3 . Toán về quan hệ các số. Dạng 4 . Toán có nội dung hình học. Dạng 5 . Toán chuyển động. Quãng đường = Vận tốc x Thời gian. Dạng 6 . Toán về chuyển động trên dòng nước. Vận tốc tàu khi xuôi dòng = Vận tốc của tàu khi nước yên lặng + Vận tốc dòng nước. Vận tốc tàu khi ngược dòng = Vận tốc của tàu khi nước yên lặng – Vận tốc dòng nước. Dạng 7 . Các dạng khác. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO – PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN
Chuyên đề phương trình quy về phương trình bậc hai
Tài liệu gồm 39 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình quy về phương trình bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Giải phương trình trùng phương. Xét phương trình trùng phương: ax^4 + bx2 + c = 0 (a ≠ 0). + Bước 1. Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai: at^2 + bt + c = 0 (a ≠ 0). + Bước 2. Giải phương trình bậc hai ẩn t từ đó ta tìm được các nghiệm của phương trình trùng phương đã cho. Dạng 2 . Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau: + Bước 1. Tìm điều kiện xác định của ẩn. + Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3. Giải phương trình bậc hai nhận được ở bước 2. + Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. Dạng 3 . Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có các bước giải như sau: + Bước 1. Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2. Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4 . Giải phương trình bằng phương pháp đặt ẩn phụ. + Bước 1. Đặt điều kiện xác định (nếu có). + Bước 2. Đặt ẩn phụ, đặt điều kiện của ẩn phụ (nếu có) và giải phương trình theo ẩn mới. + Bước 3. Tìm nghiệm ban đầu và so sánh với điều kiện xác định và kết luận. Dạng 5 . Phương trình chứa biểu thức trong dấu căn. Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6 . Một số dạng khác. Ngoài các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế … để giải phương trình. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hệ thức Vi-ét và ứng dụng
Tài liệu gồm 57 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ thức Vi-ét và ứng dụng, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 6. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hệ thức Vi-ét. 2. Ứng dụng của hệ thức Vi-ét. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. Dạng 2. Giải phương trình bằng cách nhẩm nghiệm. Dạng 3. Tìm hai số khi biết tổng và tích. Dạng 4. Phân tích tam thức bậc hai thành nhân tử. Dạng 5. Xét dấu các nghiệm của phương trình bậc hai. Dạng 6. Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN Dạng 1: Nhẩm nghiệm của phương trình bậc hai. Dạng 2: Lập phương trình bậc hai có hai nghiệm cho trước. Dạng 3: Tính giá trị biểu thức theo hai nghiệm. Dạng 4: Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện cho trước.
Chuyên đề công thức nghiệm của phương trình bậc hai
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề công thức nghiệm của phương trình bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 4. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình bậc hai một ẩn. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn của phương trình bậc hai. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Không dùng công thức nghiệm, giải phương trình bậc hai một ẩn cho trước. Dạng 2. Giải phương trình bậc hai bằng cách sử dụng công thức nghiệm, công thức nghiệm thu gọn. Dạng 3. Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. Dạng 4. Giải và biện luận phương trình dạng bậc hai. Dạng 5. Một số bài toán liên quan đến tính có nghiệm của phương trình bậc hai; nghiệm chung của các phương trình dạng bậc hai; hai phương trình dạng bậc hai tương đương. B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN