Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập lớp 9 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam

Nội dung Đề ôn tập lớp 9 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam Bản PDF - Nội dung bài viết Đề ôn tập Toán lớp 9 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam Đề ôn tập Toán lớp 9 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam Trong bối cảnh dịch bệnh vi-rút Corona (COVID-19) đang diễn ra, các học sinh khối 9 trường THPT chuyên Hà Nội – Amsterdam không thể đi học trở lại sau kỳ nghỉ lễ Tết Nguyên Đán 2020. Điều này ảnh hưởng đến việc tiếp thu kiến thức môn Toán lớp 9 của học sinh. Để giúp học sinh tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán lớp 9 cho giai đoạn tháng 03 năm 2020. Bộ đề này bao gồm 06 trang với 03 đề, đã chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 9 tự ôn luyện. Trích dẫn một số câu hỏi từ đề ôn tập Toán lớp 9 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam: + Câu hỏi 1: Hai công nhân làm chung một công việc sau 5 giờ 50 phút sẽ hoàn thành xong công việc đó. Sau khi làm chung 5 giờ thì người thứ nhất đi làm việc khác trong khi người thứ hai vẫn tiếp tục làm trong 2 giờ nữa mới hoàn thành xong công việc. Hỏi nếu làm riêng thì mỗi người phải mất bao nhiêu thời gian để hoàn thành xong công việc? + Câu hỏi 2: Trong nửa đường tròn đường kính AB, gọi M là điểm chính giữa của cung AB. Chứng minh rằng năm điểm A, B, C, D, E cùng thuộc một đường tròn. + Câu hỏi 3: Cho tam giác ABC có BC cố định và góc A bằng 50 độ. Gọi D là giao điểm của ba đường phân giác trong của tam giác. Hãy tìm quỹ tích điểm D. Đề ôn tập Toán lớp 9 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam sẽ giúp học sinh khối 9 nắm vững kiến thức, tự tin chuẩn bị cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 năm 2020 - 2021 trường THCS Nguyễn Trãi - Hà Nội
Chủ Nhật ngày 23 tháng 05 năm 2021, trường THCS Nguyễn Trãi, quận Thanh Xuân, thành phố Hà Nội tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021. Đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội : + Một đội sản xuất phải làm 200 sản phẩm trong một thời gian qui định. Trong 4 ngày đầu họ đã thực hiện theo đúng kế hoạch, những ngày còn lại họ đã làm vượt mức mỗi ngày 10 sản phẩm nên đã hoàn thành công việc sớm hơn 2 ngày. Hỏi theo kế hoạch mỗi ngày đội phải làm bao nhiều sản phẩm? + Một quả bóng đá hình cầu có đường kính bằng 24cm. Tính diện tích da dùng để khâu thành quả bóng đó, biết tỉ lệ da sử dụng làm bóng bị hao hụt 3% (hình minh họa). + Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE thuộc nửa mặt phẳng bờ là đường thẳng OA không chứa điểm B của đường tròn (O). Gọi H là giao điểm của OA và BC. 1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2. Chứng minh AO vuông góc BC tại H và AH.AO = AD.AE. 3. Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB, BC lần lượt tại I, K. Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.
Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 phòng GDĐT Long Biên - Hà Nội
Thứ Sáu ngày 21 tháng 05 năm 2021, phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 ôn tập, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán sắp tới. Đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Một mảnh vườn hình chữ nhật có diện tích là 224 m2. Nếu giảm chiều dài đi 1m và tăng chiều rộng thêm 1m thì mảnh vườn trở thành hình vuông. Tính chiều dài, chiều rộng của mảnh vườn. + Một hình trụ có bán kính đường tròn đáy là 5cm, chiều cao là 15cm. Hãy tính diện tích toàn phần của hình trụ (lấy pi = 3,14). + Cho nửa đường tròn (O), đường kính AB = 2R. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A). 1) Chứng minh bốn điểm B, C, D, E cùng thuộc một đường tròn. 2) Chứng minh ba điểm B, F, D thẳng hàng và AF.AN + BF.BD = 4R2. 3) Gọi I là tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm N thay đổi trên cung nhỏ MB (N khác M và B).
Đề kiểm tra chất lượng Toán 9 năm 2020 - 2021 trường THCS Quang Trung - Thanh Hóa
Đề kiểm tra chất lượng Toán 9 năm 2020 – 2021 trường THCS Quang Trung – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.
Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 phòng GDĐT Nghi Lộc - Nghệ An
Đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Nghi Lộc – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 phòng GD&ĐT Nghi Lộc – Nghệ An : + Tìm phương trình đường thẳng (d) đi qua M(1;-2) và N(4;4). + Một tổ sản xuất phải làm 260 sản phẩm trong một thời gian nhất định. Trên thực tế mỗi ngày tổ đều làm vượt mức 3 sản phẩm, do đó tổ đã làm xong trước thời hạn 1 ngày và làm được 261 sản phẩm. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất bao nhiêu sản phẩm? + Cho đường tròn (O) có đường kính AB = 2R và lấy điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F. a) Chứng minh tứ giác CDEF nội tiếp. b) Chứng minh: DA.DE = DB.DC. c) Chứng minh: CFD = OCB. d) Gọi I là trung điểm FD, r là bán kính đường tròn nội tiếp tam giác OCI và OI = a. Chứng minh rằng?