Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2021 - 2022 trường THCS Lê Quý Đôn - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Lê Quý Đôn, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 31 tháng 05 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 năm 2021 – 2022 trường THCS Lê Quý Đôn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai vòi cùng chảy vào một bể không có nước thì sau 1 giờ 20 phút đầy bể. Nếu để vòi I chảy một mình trong 10 phút rồi khóa lại và mở tiếp vòi II chảy trong 12 phút thì cả hai vòi chảy được 2 15 bể. Tính thời gian mỗi vòi chảy một mình đầy bể? + Một chiếc nón có đường kính đáy bằng 40cm, độ dài đường sinh là 30cm. Người ta lát mặt xung quanh hình nón bằng 3 lớp lá khô. Tính diện tích lá cần dùng để tạo nên một chiếc nón như thế (lấy pi = 3,14). + Cho đường tròn tâm O bán kính R có hai đường kính AB, CD vuông góc với nhau. Lấy điểm M bất kì thuộc đoạn thẳng OA (M khác O và A). Tia DM cắt đường tròn (O) tại N. 1) Chứng minh bốn điểm O, M, N, C cùng thuộc một đường tròn. 2) Chứng minh DM.DN = DO.DC = 2R2. 3) Đường tròn tâm M bán kính MC cắt AC, CB lần lượt tại E và F. Chứng minh ba điểm E, M, F thẳng hàng. Tìm vị trí của điểm M trên đoạn thẳng OA để 4 1 S CE CF đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra kỳ 2 Toán 9 năm 2018 2019 trường chuyên Hà Nội Amsterdam
THCS. giới thiệu đến bạn đọc đề kiểm tra kỳ 2 Toán 9 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam, đề thi gồm 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2019.
Đề kiểm tra khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Thanh Xuân - Hà Nội
Đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội công nhân theo kế hoạch cần phải sản xuất 900 sản phẩm trong một số ngày quy định. Do mỗi ngày đội công nhân đó sản xuất vượt mức 3 sản phẩm nên đội công nhân đã hoàn thành vượt mức kế hoạch 90 sản phẩm và sớm hơn thời gian quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân phải sản xuất bao nhiêu sản phẩm? [ads] + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tổng tung độ bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyển tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di động trên cung nhỏ BC thì chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Tìm vị trí của M trên cung nhỏ BC để đoạn EF có độ dài nhỏ nhất.
Đề khảo sát Toán 9 lần 2 năm 2018 - 2019 trường THCS Đại Áng - Hà Nội
Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018 – 2019, đề thi gồm 05 bài toán tự luận, học sinh làm bài thi Toán trong 120 phút, kỳ thi nhằm kiểm tra chất lượng môn Toán đối với học sinh lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đồng thời giúp học sinh rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2018 – 2019 trường THCS Đại Áng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Do đó đến B sớm hơn 1 giờ so với dự định. Tính quãng đường AB? [ads] + Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Tìm m? + Cho nửa đường tròn tâm (O), đường kính AB. Điểm H cố định thuộc đoạn thẳng AO (H khác A và O). Đường thẳng đi qua điểm H và vuông góc với AD cắt nửa đường tròn (O) tại C. Trên cung BC lấy D bất kì (D khác B và C). Tiếp tuyến tại D của nửa đường tròn cắt HC tại E. Gọi I là giao điểm của AD và HC. a) Chứng minh tứ giác HBDI nội tiếp đường tròn. b) Chứng minh tam giác DEI cân. c) Gọi F là tâm đường tròn ngoại tiếp tam giác ICD. Chứng minh góc ABF có số đo không đổi khi D thay đổi trên cung BC (D khác B và C).