Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn ĐT HSG tỉnh Toán 8 năm 2022 - 2023 phòng GDĐT Triệu Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn đội dự tuyển học sinh giỏi cấp tỉnh môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề chọn ĐT HSG tỉnh Toán 8 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Cho a, b là các số tự nhiên lớn hơn 2 và p là số tự nhiên thỏa mãn 2 2 1 1 1 p a b. Chứng minh rằng p là hợp số. + Cho đoạn thẳng AB = 2a. Gọi O là trung điểm của AB. Dựng các tia Ax, By về cùng một phía của AB sao cho Ax, By lần lượt vuông góc với AB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho 0 COD 90. a. Chứng minh 2 AC BD a và CD AC BD. b. Kẻ OM vuông góc với CD tại M, gọi N là giao điểm của AD và BC. Chứng minh rằng MN // AC. + Cho hình thang ABCD có đáy lớn là CD. Gọi O là giao điểm của AC và BD. Một đường thẳng cắt các đoạn AD, OD, OC, BC lần lượt tại M, N, P, Q sao cho MN = NP = PQ. Chứng minh rằng CD = 2AB.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 8 năm 2014 - 2015 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 năm 2014 – 2015 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án và lời giải. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2014 – 2015 phòng GD&ĐT Ý Yên – Nam Định : + Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. 1) Chứng minh EDA = EBC. 2) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi. + Cho tam giác ABC. Gọi M là điểm bất kì trên cạnh AC, qua M kẻ các đường thẳng ME, MF lần lượt song song với cạnh AB, BC (E thuộc BC và F thuộc AB). Tìm vị trí của M để diện tích tứ giác BEMF có diện tích lớn nhất. + Tìm giá trị nguyên của x để biểu thức Q = 2.P nhận giá trị nguyên.
Đề thi HSG Toán 8 năm 2014 - 2015 phòng GDĐT Tam Đảo - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Tam Đảo – Vĩnh Phúc; đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Tam Đảo – Vĩnh Phúc : + Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM. a) Chứng minh: ∆OEM vuông cân. b) Chứng minh: ME // BN. c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh ba điểm O, M, H thẳng hàng. + Cho biểu thức: M. a) Rút gọn M. b) Tìm các giá trị nguyên của x để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. + Cho ba số x, y, z khác không thỏa mãn: x + y + z = 2015 và 1/x + 1/y + 1/z = 1/2015. Chứng minh rằng trong ba số x, y, z tồn tại hai số đối nhau.
Đề thi HSG cấp huyện Toán 8 năm 2012 - 2013 phòng GDĐT Việt Yên - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG cấp huyện Toán 8 năm 2012 – 2013 phòng GD&ĐT Việt Yên – Bắc Giang; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG cấp huyện Toán 8 năm 2012 – 2013 phòng GD&ĐT Việt Yên – Bắc Giang : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. 1. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD2 = 1/AM2 + 1/AN2. + Tìm đa thức f(x) biết rằng: f(x) chia cho x – 2 dư 10, f(x) chia cho x – 2 dư 24, f(x) chia cho x2 – 4 được thương là -5x và còn dư. + Phân tích đa thức sau thành nhân tử: x4 + 2013×2 + 2012x + 2013.
Đề thi Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh
Nội dung Đề thi Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Đức Thọ Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi Olympic lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Đức Thọ Hà Tĩnh Đề thi Olympic lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Đức Thọ Hà Tĩnh Xin chào quý thầy cô và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi Olympic môn Toán cho học sinh lớp 8 năm học 2022-2023 của phòng Giáo dục và Đào tạo UBND huyện Đức Thọ, tỉnh Hà Tĩnh. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 24 tháng 03 năm 2023. Dưới đây là một số câu hỏi trong đề thi: Câu 1: Cho tam giác ABC có A = 120°, AB = 3 cm, AC = 6 cm. Hãy tính độ dài đường phân giác AD. Câu 2: Cho tam giác MNP đồng dạng với tam giác ABC biết AB = 15 cm, BC = 20 cm, CA = 30 cm. Tính độ dài các cạnh MN, NP và PM của tam giác MNP nếu chu vi của nó bằng 26 cm. Câu 3: Bốn số thực a, b, c, d thỏa mãn a/2 = b/4 = c/6 = d/(8 + b). Hỏi giá trị nhỏ nhất của tổng S = a + b + c + d bằng bao nhiêu? Hy vọng rằng, đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng giải các bài toán Toán một cách hiệu quả. Chúc các em thi tốt!