Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề thi THPT Quốc gia môn Toán năm 2017 - 2018 - 2019

Trong quá trình ôn tập để chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020, việc xem lại đề thi chính thức THPT Quốc gia môn Toán của các năm học trước là rất cần thiết, bởi qua đó các em có thể nắm vững được hình thức, cấu trúc và độ khó của đề thi, biết được các dạng bài trọng tâm, từ đó có thể đưa ra những nhận định, để có phương pháp ôn tập phù hợp. giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu toàn cảnh đề thi THPT Quốc gia môn Toán năm 2017 – 2018 – 2019, tài liệu gồm có 243 trang, được sưu tầm và biên soạn bởi thầy giáo Th.s Nguyễn Chín Em, phân dạng các câu hỏi và bài tập trong các đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo (bao gồm: đề chính thức, đề tham khảo, đề minh họa …) thành các chuyên đề, có đáp án và lời giải chi tiết, rất thuận tiện để tham khảo. [ads] Các chuyên đề trong tài liệu toàn cảnh đề thi THPT Quốc gia môn Toán năm 2017 – 2018 – 2019: 1. Giải tích 12 – Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. 2. Giải tích 12 – Chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. 3. Giải tích 12 – Chương 3: Nguyên hàm – Tích phân và ứng dụng. 4. Giải tích 12 – Chương 4: Số phức. 5. Hình học 12 – Chương 1: Khối đa diện và thể tích của chúng. 6. Hình học 12 – Chương 2: Mặt nón, mặt trụ, mặt cầu. 7. Hình học 12 – Chương 3: Phương pháp tọa độ trong không gian Oxyz. 8. Đại số và Giải tích 11 – Chương 1: Hàm số lượng giác. 9. Đại số và Giải tích 11 – Chương 2: Tổ hợp và xác suất. 10. Đại số và Giải tích 11 – Chương 4: Giới hạn. 11. Đại số và Giải tích 11 – Chương 5: Đạo hàm. 12. Hình học 11 – Chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh