Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra định kỳ lần 2 Toán 12 năm 2019 - 2020 trường chuyên Bắc Ninh

Ngày … tháng 12 năm 2019, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng định kỳ lần thứ hai môn Toán lớp 12 năm học 2019 – 2020, nhằm đánh giá tình hình học tập môn Toán của học sinh khối 12 và rèn luyện để hướng đến kỳ thi THPT Quốc gia môn Toán năm 2020. Đề kiểm tra định kỳ lần 2 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh mã đề 201 được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 201, 202, 203, 204, 205, 206, 207, 208. Trích dẫn đề kiểm tra định kỳ lần 2 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh : + Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước vào cốc rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc). [ads] + Anh Dũng đem gửi tiết kiệm số tiền là 400 triệu đồng ở hai loại kì hạn khác nhau. Anh gửi 250 triệu đồng theo kì hạn 3 tháng với lãi suất x% một quý. Số tiền còn lại anh gửi theo kì hạn 1 tháng với lãi suất 0,25% một tháng. Biết rằng nếu không rút lãi ra thì số lãi sẽ được nhập vào số gốc để tính lãi cho kì hạn tiếp theo. Sau một năm số tiền cả gốc và lãi của anh là 416.780.000 đồng. Tính x. + Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng 3a/2. Diện tích của thiết diện đó bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia lần 1 năm học 2017 - 2018 môn Toán 12 trường THPT Hai Bà Trưng - Vĩnh Phúc
Đề thi thử môn Toán 2018 trường THPT Hai Bà Trưng – Vĩnh Phúc gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Thiết diện của một mặt phẳng với một tứ diện chỉ có thể là: A. Một tứ giác hoặc một ngũ giác B. Một tam giác hoặc một hình bình hành C. Một tam giác hoặc một tứ giác D. Một tam giác hoặc một ngũ giác + Khối đa diện đều nào có số đỉnh nhiều nhất A. Khối tứ diện đều B. Khối nhị thập diện đều [ads] C. Khối bát diện đều D. Khối thập nhị diện đều + Cho hai đường thẳng song song d và d’. Trong các khẳng định sau khẳng định nào đúng? A. Cả ba khẳng định trên đều đúng B. Có đúng một phép tịnh tiến biến d thành d’ C. Có vô số phép tịnh tiến biến d thành d’ D. Phép tịnh tiến theo vectơ v có giá vuông góc với d biến d thành d’
Đề thi giữa học kỳ 1 năm học 2017 - 2018 môn Toán 12 trường THPT C Nghĩa Hưng - Nam Định
Đề thi giữa học kỳ 1 năm học 2017 – 2018 môn Toán 12 trường THPT C Nghĩa Hưng – Nam Định gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án (gạch chân). Trích dẫn đề thi : + Cho hàm số y = f(x) xác định và có đạo hàm trên tập D, x0 ∈ D. Chọn mệnh đề đúng trong các mệnh đề sau. A. Hàm số đạt cực trị tại các điểm x1, x2 mà x1 < x2 thì x1 là điểm cực tiểu, x2 là điểm cực đại B. Giá trị cực đại của hàm số y = f(x) trên D chính là giá trị lớn nhất của hàm số trên D C. Nếu f'(x0) = 0 và f”(x0) = 0 thì x0 là điểm cực đại D. Nếu x0 là điểm cực đại thì f'(x0) = 0 [ads] + Cho hàm số y = (x + 1)/√(x^2 + 4).Khẳng định nào sau đây đúng? A. Đồ thị hàm số có 2 tiệm cận đứng là x = ±2 B. Đồ thị hàm số có 2 tiệm cận đứng là x = ±2 và một tiệm cận ngang y = 1 C. Đồ thị hàm số có 2 tiệm cận ngang là x = ±1 D. Đồ thị hàm số có 2 tiệm cận ngang y = ±1 + Mặt phẳng (AB’C’) chia khối lăng trụ ABC.A’B’C’ thành các khối đa diện nào? A. Một khối chóp tam giác và một khối chóp tứ giác B. Hai khối chóp tam giác C. Một khối chóp tam giác và một khối chóp ngũ giác D. Hai khối chóp tứ giác
Đề thi giữa học kỳ I năm học 2017 - 2018 môn Toán 12 trường THPT Lương Thế Vinh - Hà Nội
Đề thi giữa học kỳ I năm học 2017 – 2018 môn Toán 12 trường THPT Lương Thế Vinh – Hà Nội gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 100 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Chu kì bán hủy của chất phóng xạ Plutôni Pu239 là 24360 năm (tức là một lượng Pu239 sau 24360 năm phân hủy chỉ còn lại một nửa). Sự phân hủy được tính theo công thức S = A.e^rt, trong đó A là lượng phóng xạ ban đầu, r là tỷ lệ phân hủy hàng năm (r < 0), t là thời gian phân hủy, S là lượng còn lại sau thời gian phân hủy t. Hỏi 100 gam Pu239 sau bao lâu còn 20 gam? A. 73180 năm B. 53120 năm C. 56562 năm D. 65562 năm [ads] + Ông Bình dự định gửi vào ngân hàng một số tiền với lãi suất 6, 5% một năm. Biết rằng cứ sau mỗi năm số tiễn lãi sẽ gộp vào vốn ban đầu. Tính số tiền x (triệu đồng, x ∈ N) ông Bình gửi vào ngân hàng để sau 3 năm số tiền lãi vừa đủ mua một chiếc xe máy trị giá 60 triệu đồng. A. 300 triệu đồng B. 280 triệu đồng C. 289 triệu đồng D. 308 triệu đồng + Cho hình nón có đường cao và bán kính đáy bằng nhau và bằng 3. Trong tất cả các khối trụ nằm trong hình nón có một đáy thuộc mặt đáy của hình nón và đường tròn đáy còn lại thuộc hình nón, thể tích khối trụ lớn nhất là: A. 4π√3 B. 9π/2 C. 27π D. 4π
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hoa Lư A - Ninh Bình lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hoa Lư A – Ninh Bình gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 28 tháng 10 năm 2017. Trích dẫn đề thi : + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình bên. Mệnh đề nào dưới đây đúng? A. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu B. Hàm số y = f(x) có 2 điểm cực đại và 2 điểm cực tiểu C. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu D. Hàm số y = f(x) có 2 điểm cực đại và 1 điểm cực tiểu [ads] + Cho hàm số bậc bốn y = ax^4 + bx^2 + c (a ≠ 0) có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng? A. a > 0, b < 0, c < 0 B. a > 0, b > 0, c < 0 C. a > 0, b < 0, c > 0 D. a < 0, b > 0, c < 0 + Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b . Tính xác xuất để 3 điểm được chọn tạo thành một tam giác. A. 5/11 B. 60/169 C. 2/11 D. 9/11