Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán về giới hạn trong đề thi Olympic Toán 11

LỜI GIỚI THIỆU Kính chào Quý Thầy Cô cùng các bạn học sinh thân mến! Trong quá trình ôn tập để chuẩn bị cho những kì thi học sinh giỏi, em cùng với Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đã vô cùng thích thú với Chuyên đề “Giới hạn”. Nhằm để củng cố kiến thức, qua sưu tầm, tìm tòi và học hỏi, chúng em đã tổng hợp được một số dạng toán trong các đề thi Olympic tháng 4, Kì thi tuyển chọn học sinh giỏi … và phát triển thêm một số bài tập hay và khó. Chúng em hy vọng tài liệu nhỏ này có thể giúp Quý Thầy Cô và các bạn học sinh tham khảo, mở rộng thêm nhiều dạng bài tập mới, cũng như sẽ giúp ích cho các bạn học sinh, các anh chị ôn tập để chuẩn bị cho những kì thi sắp tới! Khi tổng hợp và biên soạn, chúng em xin chân thành cảm ơn đến Thầy Nguyễn Minh Thành đã góp ý về mặt ý tưởng cũng như hỗ trợ về mặt công nghệ thông tin để giúp chúng em hoàn thiện tài liệu này. Ngoài ra, xin gửi lời cảm ơn đến những bạn sau: 1 Bạn Tăng Phồn Thịnh, Lớp 11A1, Niên khóa 2019 – 2022. 2 Bạn Huỳnh Trần Nhật Quang, Lớp 11T1, Niên khóa 2019 – 2022. 3 Bạn Nguyễn Phạm Nhật Minh, Lớp 11T2, Niên khóa 2019 – 2022. 4 Bạn Lý Nguyễn, Lớp 11T2, Niên khóa 2019 – 2022. 5 Bạn Nguyễn Đức Lộc, Lớp 11T1, Niên khóa 2019 – 2022. 6 Bạn Nguyễn Minh Khoa, Lớp 11A2, Niên khóa 2019 – 2022. Cùng các bạn là thành viên của Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đã cùng tham gia, đóng góp để tài liệu thêm hoàn thiện và chỉnh chu hơn. Đây là dự án ebook đầu tiên của chúng em, dù đã cố gắng nhưng vẫn không thể tránh những sai sót, chúng em rất mong nhận được những phản hồi, góp ý từ Quý Thầy Cô và các bạn học sinh. Kính chúc Quý Thầy Cô và các bạn học một năm mới thành công và hạnh phúc. Đặc biệt, chúc các bạn trong Đội tuyển Toán 11 Trường THPT Nguyễn Đình Chiểu – Tiền Giang đạt kết quả thật cao trong những kỳ thi sắp tới. Em xin trân trọng kính chào! Mỹ Tho, ngày 18 tháng 02 năm 2021. Nguyễn Thị Anh Thư, Lớp 11T3, Niên khóa 2019 – 2022.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải các dạng toán giới hạn
Tài liệu gồm 97 trang, hướng dẫn giải các dạng toán giới hạn trong chương trình Đại số và Giải tích 11 chương 4. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. + Dạng 1.1. Dùng định nghĩa chứng minh giới hạn. + Dạng 1.2. Tính giới hạn dãy số dạng phân thức. + Dạng 1.3. Tính giới hạn dãy số dạng phân thức chứa a^n. + Dạng 1.4. Dãy số dạng Lũy thừa – Mũ. + Dạng 1.5. Giới hạn dãy số chứa căn thức. BÀI 2 . GIỚI HẠN HÀM SỐ. + Dạng 2.1. Giới hạn của hàm số dạng vô định 0/0. + Dạng 2.2. Giới hạn dạng vô định ∞/∞; ∞ – ∞; 0.∞. + Dạng 2.3. Tính giới hạn hàm đa thức, hàm phân thức và giới hạn một bên. BÀI 3 . HÀM SỐ LIÊN TỤC. + Dạng 3.1. Xét tính liên tục của hàm số tại một điểm. + Dạng 3.2. Hàm số liên tục trên một tập hợp. + Dạng 3.3. Dạng tìm tham số để hàm số liên tục – gián đoạn. + Dạng 3.4. Chứng minh phương trình có nghiệm. BÀI 4 . ĐỀ KIỂM TRA CHƯƠNG IV.
Lý thuyết và bài tập chuyên đề giới hạn - Phùng Hoàng Em
Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Phùng Hoàng Em, tóm tắt lý thuyết và tuyển chọn các bài tập trắc nghiệm (có đáp án) các chuyên đề: giới hạn của dãy số, giới hạn của hàm số, hàm số liên tục; giúp học sinh lớp 11 rèn luyện khi học chương trình Đại số và Giải tích 11 chương 4: Giới hạn. Mục lục tài liệu lý thuyết và bài tập chuyên đề giới hạn – Phùng Hoàng Em: 1. GIỚI HẠN CỦA DÃY SỐ. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Khử vô định dạng ∞/∞. Dạng 2. Khử vô định dạng ∞ − ∞. Dạng 3. Một số quy tắc tính giới hạn vô cực. Dạng 4. Tổng của cấp số nhân lùi vô hạn. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 2. GIỚI HẠN CỦA HÀM SỐ. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Giới hạn của hàm số khi x → x0. Khử dạng vô định 0/0. Dạng 2. Giới hạn của hàm số khi x → ±∞. Khử dạng vô định ∞/∞; ∞ − ∞; 0·∞. Dạng 3. Giới hạn một bên. Sự tồn tại giới hạn. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 3. HÀM SỐ LIÊN TỤC. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Xét tính liên tục của hàm số tại một điểm. Dạng 2. Xét tính liên tục của hàm số trên miền xác định. Dạng 3. Tìm giá trị của tham số để hàm số liên tục – gián đoạn. Dạng 4. Chứng minh phương trình có nghiệm. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 4. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ.
218 câu vận dụng cao giới hạn ôn thi THPT môn Toán
Tài liệu gồm 22 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 218 câu vận dụng cao (VDC) giới hạn có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 218 câu vận dụng cao giới hạn ôn thi THPT môn Toán: + Cho 4ABC đều có cạnh bằng 1. Gọi A1, B1, C1 lần lượt là trung điểm BC, CA, AB ta được 4A1B1C1. Tương tự 4A2B2C2 có các đỉnh là trung điểm của các cạnh B1C1, C1A1, A1B1. Quá trình lặp lại sau n bước (n ∈ N∗) ta được 4AnBnCn. Gọi S0, Sn lần lươt là diện tích 4ABC và 4AnBnCn. Đặt Tn là tổng diện tích các tam giác ABC, A1B1C1,. . . , AnBnCn. Hỏi Tn không vượt quá số nào sau đây? + Trong dịp hội trại hè 2020 bạn An thả một quả bóng cao su từ độ cao 3 m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng hai phần ba độ cao lần rơi trước. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng? + Cho phương trình x5 + 3×2 − 14x − 7 = 0. Mệnh đề nào dưới đây là đúng. A Phương trình có đúng 3 nghiệm trong (−1; 2). B Phương trình có 1 nghiệm trong (0; 1). C Phương trình không có nghiệm trong (1; 2). D Phương trình có ít nhất 2 nghiệm trong (−1; 2).
Giới hạn dãy số, giới hạn hàm số và hàm số liên tục - Diệp Tuân
Tài liệu gồm 156 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các bài tập chuyên đề giới hạn dãy số, giới hạn hàm số và hàm số liên tục (Đại số và Giải tích 11 chương 4). Khái quát nội dung tài liệu giới hạn dãy số, giới hạn hàm số và hàm số liên tục – Diệp Tuân: BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. Dạng 1. Chứng minh dãy số có giới hạn là 0. Dạng 2. Dùng định nghĩa chứng minh dãy số (un) có giới hạn hữu hạn L. Dạng 3. Tìm giới hạn của dãy (un) có giới hạn hữu hạn bằng quy tắc, định lý. + Bài toán 1. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (với P(n) và Q(n) là hai đa thức). + Bài toán 2. Dãy (un) là một phân thức dạng un = P(n)/Q(n) (với P(n) và Q(n) là các biểu thức chứa căn của n). + Bài toán 3. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n) và Q(n) là các biểu thức chứa hàm mũ). Dạng 4. Tính giới hạn mà dãy (un) cho dưới dạng công thức truy hồi. Dạng 5. Tính giới hạn dựa vào định lý kẹp. Dạng 6. Giới hạn có kết quả là vô cực. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Tìm giới hạn của hàm số tại một điểm bằng quy tắc, định lý. + Bài toán 1. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là đa thức theo biến x. + Bài toán 2. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là các biểu thức có chứa căn thức theo x. + Bài toán 3. Thêm bớt số hạng hoặc một biểu thức vắng để khử được dạng vô định (khử căn bậc hai và bậc ba). Dạng 3. Tìm giới hạn của hàm số khi x → ±∞. + Bài toán 1. Giới hạn hữu hạn lim P(x).Q(x) với lim P(x) = L và lim Q(x) = ±∞. + Bài toán 2. Giới hạn hữu hạn hữu tỉ lim P(x)/Q(x) (bậc tử bé hơn hoặc bằng bậc mẫu). + Bài toán 3. Giới hạn vô cực lim P(x)/Q(x) (bậc tử lớn hơn bậc mẫu). + Bài toán 4. Giới hạn vô cực dạng vô định ∞ – ∞. + Bài toán 5. Giới hạn vô cực dạng vô định 0.∞. Dạng 4. Tìm giới hạn của hàm số các hàm đặc biệt. [ads] BÀI 3 . GIỚI HẠN MỘT BÊN. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Chứng minh sự tồn tại của giới hạn. BÀI 4 . HÀM SỐ LIÊN TỤC. Dạng 1. Xét tính liên tục của hàm số tại một điểm. + Bài toán 1. Cho hàm số f(x) = f1(x) khi x khác x0 và f(x) = f2(x) khi x = x0. + Bài toán 2. Cho hàm số f(x) = f1(x) khi x < x0 và f(x) = f2(x) khi x ≥ x0. Dạng 2. Xét tính liên tục của hàm số trên R. Dạng 3. Chứng minh phương trình có nghiệm. + Bài toán 1. Cho phương trình f(x) = 0. Chứng minh phương trình có nghiệm. + Bài toán 2. Chứng minh phương trình có chứa tham số m luôn có nghiệm với mọi m. + Bài toán 3. Chứng minh phương trình có chứa tham số m luôn có nghiệm dương hoặc nghiệm âm với mọi m.