Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Cầu Giấy Hà Nội

Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 1 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội Chào các thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu với các bạn đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 1 năm học 2023 – 2024 tại trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày thứ Năm, 07 tháng 09 năm 2023. Dưới đây là một số câu hỏi trong đề thi: Cho x và y là các số nguyên dương thỏa mãn x^3 + y và x + y^3 cùng chia hết cho x^2 + y^2. Chứng minh rằng 2x + 2y là số chính phương. Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1. Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử? Chúc các em học sinh thực sự tự tin và thành công trong kỳ thi sắp tới. Hãy nỗ lực hết mình và chinh phục mọi thách thức trước mắt. Hy vọng rằng đây sẽ là cơ hội để các bạn khẳng định khả năng và tài năng của mình. Cố gắng lên, các bạn ạ!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Phú Yên
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Đắk Lắk
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG tỉnh Toán 9 năm học 2020 - 2021 sở GDĐT Quảng Bình
Đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết, kỳ thi được tổ chức vào ngày 08 tháng 12 năm 2020. Trích dẫn đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Số nguyên dương n được gọi là số điều hòa nếu tổng các bình phương của các ước dương của nó (kể cả 1 và n) bằng (n + 3)^2. Chứng minh rằng nếu pq (với p và q là các số nguyên tố khác nhau) là số điều hòa thì pq + 2 là số chính phương. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng đi qua điểm A(1;4) và cắt các tia Ox, Oy lần lượt tại B và C (khác O). a. Viết phương trình đường thẳng (d) sao cho biểu thức OA + OB + OC đạt giá trị nhỏ nhất. b. Tính giá trị lớn nhất của biểu thức P = OB.OC/BC. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Bình Định
Ngày 18 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho nửa đường tròn tâm O đường kính AB, trên nửa đường tròn (O) lấy điểm C sao cho cung BC nhỏ hơn cung AC, qua C dựng tiếp tuyến với đường tròn (O) cắt AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD (K thuộc CD); CH cắt BK tại E. a) Chứng minh BK + BD < EC. b) Chứng minh BH.AD = AH.BD. + Cho tam giác ABC vuông cân tại A và M là điểm di động trên BC (M khác B và C). Hình chiếu của M lên AB, AC lần lượt là H và K. Gọi I là giao điểm của BK và CH. Chứng minh rằng đường thẳng IM luôn đi qua một điểm cố định. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.