Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán năm học 2020 - 2021 sở GDĐT Bắc Giang

Thứ Ba ngày 22 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2020 – 2021. Đề thi học sinh giỏi Toán năm học 2020 – 2021 sở GD&ĐT Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán năm học 2020 – 2021 sở GD&ĐT Bắc Giang : + Sắp đến ngày Tết Trung thu, tổ chức Smile Foundation của trường THPT chuyên Bắc Giang làm bánh gây quỹ từ thiện thường niên. Sản phẩm năm nay là một cặp bánh dẻo, bánh nướng có tổng giá cặp bánh đó là 50000 đồng. Do số lượng có hạn nên mỗi bạn chỉ được mua đúng một cặp. Để mua bánh các bạn học sinh trường chuyên phải xếp hàng. Biết rằng trong hàng có m + n bạn, trong đó m bạn cầm tờ 50000 đồng và n bạn cầm tờ 100000 đồng. Hỏi có bao nhiêu cách xếp hàng để không bạn nào phải chờ tiền trả lại, giả thiết rằng ban đầu ban tổ chức không cầm theo đồng tiền nào. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AD, trực tâm H. Đường tròn đường kính AH cắt (O) tại điểm Q khác A. Đường tròn đường kính HQ cắt (O) tại điểm K khác Q. Gọi M là trung điểm BC. a) Đường thẳng qua H vuông góc với MH cắt BC tại X. Chứng minh rằng XK tiếp xúc với đường tròn ngoại tiếp tam giác KDM. b) Đường thẳng KQ cắt đường tròn ngoại tiếp tam giác KDM tại N khác K. Chứng minh rằng MN chia đôi AQ. + Cho số thực a và dãy số (un) xác định bởi a1 = a, un+1 = un^2 + un + a^3 (n >= 1). a) Chứng minh rằng, với dãy a thuộc [-1/2;0], dãy số hội tụ và tìm giới hạn đó. b) Cho a = 2020. Chứng minh rằng un^2 + 2020^3 luôn có ít nhất n + 4 ước số nguyên tố khác nhau.

Nguồn: toanmath.com

Đọc Sách

Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 2021 sở GD ĐT Bình Định Bản PDF Thứ Hai ngày 09 tháng 11 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi lập đội tuyển tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm học 2020 – 2021. Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho tam giác nhọn ABC không cân và nội tiếp đường tròn (O). Trong tam giác ABC lấy điểm P sao cho AP vuông góc với BC. Kẻ PE, PF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai là G (khác điểm A). Chứng minh rằng ba đường thẳng GP, BF, CE đồng quy tại một điểm. + Cho đường tròn tâm O và tam giác nhọn ABC nội tiếp đường tròn (O) có trực tâm H, trong đó AB < BC. Trên tia BO kéo dài lấy điểm D sao cho ADC = ABC. Một đường thẳng đi qua điểm H song song với đường thẳng BC cắt cung nhỏ AC tại điểm E. Chứng minh rằng BH = DE. + Cho n là số nguyên dương không nhỏ hơn 3 và các điểm A1, A2 … An cùng nằm trên một đường tròn. Có tối đa bao nhiêu tam giác nhọn có đỉnh là ba điểm trong số các điểm trên.
Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Quảng Trị
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Quảng Trị Bản PDF Ngày … tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn đội tuyển học sinh giỏi văn hóa lớp 12 THPT dự thi Quốc gia môn Toán năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm hai vòng thi: đề thi vòng 1 gồm 04 câu, đề thi vòng 2 gồm 03 câu. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Một bảng n x n (n >= 2) được chia thành các hình vuông đơn vị. Mỗi hình vuông đơn vị đó được tô màu đỏ hoặc màu xanh. Hỏi có bao nhiêu cách tô màu sao cho mỗi hình vuông 2 x 2 có đúng hai hình vuông được tô màu đỏ và hai hình vuông được tô màu xanh? + Cho tam giác ABC cân tại A. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho ED = EC. Gọi M là trung điểm DB, N là giao điểm của EM và BC. Chứng minh rằng góc DNB = góc DCA. + Cho tam giác ABC nhọn, không cân, nội tiếp (O). Các tiếp tuyến của (O) tại B và C cắt nhau tại D. Gọi M là trung điểm của BC, E là giao điểm của đường thẳng AC và BC, F (F khác A) là giao điểm thứ hai của (O) và đường tròn ngoại tiếp tam giác AME, N (N khác A) là giao điểm thứ hai của đường thẳng AM và (O). Chứng minh rằng đường thẳng FN đi qua trung điểm của MD.
Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Hải Dương
Nội dung Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Hải Dương Bản PDF Thứ Tư ngày 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Hải Dương gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Hải Dương : + Kết thúc đợt Hội học chào mừng ngày Nhà giáo Việt Nam, lớp 12A có 10 bạn được trao thưởng trong đó có An và Bình. Phần thưởng để trao cho 10 bạn gồm 5 quyển sách Hóa, 7 quyển sách Toán, 8 quyển sách Tiếng Anh (trong đó các quyển sách cùng môn là giống nhau). Mỗi bạn sẽ được nhận 2 quyển sách khác loại. Tìm xác suất để An và Bình có phần thưởng giống nhau. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có B(-1;4). Gọi D, E(-1;2) lần lượt là chân đường cao kẻ từ A, B và M là trung điểm của đoạn thẳng AB. Biết I(-3/2;7/2) là tâm đường tròn ngoại tiếp tam giác DEM. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 120°. a) Tính thể tích khối chóp S.ABCD biết SA = SB = SC và khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 3a/4. b) Tính thể tích khối chóp S.ABC biết góc giữa hai mặt phẳng (ABC), (SBC) bằng 45° và tam giác SAB vuông cân tại A.
Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bình Định Bản PDF Thứ Năm ngày 22 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Bình Định gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bình Định : + Tìm tất cả các đa thức với hệ số thực p(x), q(x), r(x) thỏa mãn p(x) – q(x) = r(x).(√p(x) + √q(x)) với mọi số thực x. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SA = SB = √2, SC = √7. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Mặt phẳng (P) thay đổi, đi qua I, cắt các tia SA, SB, SC lần lượt tại các điểm M, N, P. Tính giá trị nhỏ nhất của thể tích khối chóp S.MNP. + Cho tứ giác ABCD nội tiếp trong đường tròn (O;R). Giả sử các tia phân giác của góc BAD, góc đối đỉnh BCD cắt nhau tại I và đường tròn (I;r) tiếp xúc với các tia đối của các tia BA, DA, CB, CD. Chứng minh rằng: 1/(d + R)^2 + 1/(d – R)^2 = 1/r^2 (với d = OI).