Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 trường THPT Yên Dũng 2 - Bắc Giang lần 2

Đề thi thử Toán THPT Quốc gia 2019 trường THPT Yên Dũng 2 – Bắc Giang lần 2 mã đề 121 gồm 04 trang, đề được biên soạn theo chuẩn cấu trúc đề tham khảo của Bộ Giáo dục và Đào tạo, với 50 câu trắc nghiệm khách quan, học sinh làm bài thi trong 90 phút, đề thi tiếp nối loạt đề kiểm tra định kỳ chất lượng ôn thi THPT Quốc gia môn Toán năm học 2018 – 2019, kỳ thi được diễn ra xuyên suốt năm học để giúp học sinh có sự chuẩn bị lâu dài và kỹ lưỡng cho kỳ thi quan trong phía trước, đề thi có đáp án. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 trường THPT Yên Dũng 2 – Bắc Giang lần 2 : + Khi thiết kế vỏ lon sữa hình trụ các nhà thiết kế luôn đặt mục tiêu sao cho chi phí làm vỏ lon nhỏ nhất. Muốn thể tích khối trụ là V mà diện tích toàn phần của hình trụ nhỏ nhất thì bán kính R của đường tròn đáy khối trụ bằng? [ads] + Một người gửi tiết kiệm số tiền 80000000 đồng với lãi suất là 6,9%/ năm. Biết rằng tiền lãi hàng năm được nhập vào tiền gốc, hỏi sau đúng 5 năm người đó rút được cả gốc và lãi số tiền gần với con số nào nhất sau đây? + Ông An bắt đầu đi làm với mức lương khởi điểm là 1 triệu đồng một tháng. Cứ sau 3 năm thì ông An được tăng lương 40%. Hỏi sau tròn 20 năm đi làm tổng tiền lương ông An nhận được là bao nhiêu (làm tròn đến hai chữ số thập phân sau dấu phẩy)?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán Nguyễn Phú Khánh lần 2
Đề thi thử THPT Quốc gia 2018 môn Toán – Nguyễn Phú Khánh lần 2 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Khi nói về hàm số y = (x^2 + (m + 1)x + m + 1)/(x + 1), m là tham số, phát biểu nào sau đây là sai? A. Đồ thị hàm số luôn có điểm cực đại, cực tiểu và khoảng cách giới hạn điểm đó bằng 2√5 B. Gọi y1 và y2 là các giá trị cực đại và cực tiểu của hàm số, khi đó số trị biểu thức y2 – y1 không phụ thuộc tham số m C. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cách đều gốc tọa độ O D. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cùng với gốc tọa độ tạo thành tam giác vuông tại O + Có bao nhiêu phát biểu đúng về hàm số f(x) = x^4 – 2x^2 + 3 trên đoạn [-1; 1]? [ads] I. Hàm số y = f(x) + 2017 đồng biến trên khoảng (-1; 0) II. Hàm số y = 2017.f(x) đồng biến trên khoảng (-1; 0) III. Hàm số y = -2017.f(x) nghịch biến trên khoảng (-1; 0) IV. Hàm số y = f(x) nghịch biến trên khoảng (a; b) thì số trị của b^7 – a^3 nằm trong khoảng (0; 2) V. Hàm số y = f(x) đồng biến trên khoảng (c; d) thì c^2017 + d^2016 < 0 + Trong không gian với hệ tọa độ Oxyz, cho điểm M(3; -1; 2). Trong các phát biểu sau, phát biểu nào sai? A. Tọa độ hình chiếu của M trên mặt phẳng (xOy) là M'(3; -1; 0) B. Tọa độ hình chiếu của M trên trục Oz là M'(0;0;2) C. Tọa độ đối xứng của M qua gốc tọa độ O là M'(-3; 1; -2) D. Khoảng cách từ M đến gốc tọa độ O bằng 14^1/3
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hàn Thuyên - Bắc Ninh lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hàn Thuyên – Bắc Ninh lần 1 gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, nội dung đề thi bao gồm cả chương trình Toán 11 và 12, có đáp án tất cả các mã đề .
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1 gồm 8 mã đề, mỗi mã đề gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Nội dung đề thi bao gồm cả chương trình Toán 11 và 12, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = f(x) = x^3 + 6x^2 + 9x + 3.Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho OA = 2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán? A. 0 B. 1 C. 2 D. 3 + Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng, nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo những cuốn sổ ghi chép của mình, ông ta xác định rằng: nếu giá vé vào cửa là 20 USD/người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 USD/người thì sẽ mất 100 khách hàng hoặc giảm đi 1 USD/người thì sẽ có thêm 100 khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 USD lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp Giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để nhập là lớn nhất? [ads] A. 21 USD/người B. 18 USD/người C. 14 USD/người D. 16 USD/người + Trong không gian, cho các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại B. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau
Đề thi chất lượng giữa HKI năm học 2017 - 2018 môn Toán 12 trường THPT B Hải Hậu - Nam Định
Đề thi chất lượng giữa HKI năm học 2017 – 2018 môn Toán 12 trường THPT B Hải Hậu – Nam Định gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = f(x) có đạo hàm f'(x) = x^2 + 1 ∀x∈R. Mệnh đề nào dưới đây đúng? A. Hàm số nghịch biến trên khoảng (1; +∞) B. Hàm số đồng biến trên khoảng (-∞; +∞) C. Hàm số nghịch biến trên khoảng (-1; 1) D. Hàm số nghịch biến trên khoảng (-∞; 0) [ads] + Số các đỉnh hoặc số các mặt của hình đa diện bất kỳ đều thỏa mãn: A. Lớn hơn hoặc bằng 4 B. Lớn hơn 4 C. Lớn hơn hoặc bằng 5 D. Lớn hơn 6 + Hàm số y = 1/4.x^4 – 2.x^2 + 1 có: A. Một điểm cực đại và hai điểm cực tiểu B. Một điểm cực tiểu và một điểm cực đại C. Một điểm cực tiểu và hai điểm cực đại D. Một điểm cực đại và không có điểm cực tiểu