Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Thiệu Hóa Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng (KSCL) lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Thiệu Hóa, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, có đáp án mã đề Mã 101 Mã 102 Mã 103 Mã 104 Mã 105 Mã 106. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Thiệu Hóa – Thanh Hóa : + Trong thực hành đo đạc chiều cao cột cờ của trường, hai bạn A và B đứng ở hai bên cột cờ từ hai vị trí A, B (như hình vẽ) dùng giác kế ngắm lên đỉnh cột cờ tạo với phương nằm ngang các góc có số đo lần lượt là 0 40 và 0 80. Biết hai bạn A và B đứng cách nhau 12m. Tính chiều cao của cột cờ gần với kết quả nào sau đây nhất? + Một phân xưởng có hai máy đặc chủng 1 2 M M sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại 2 lãi 1,6 triệu đồng. Muốn sản xuất 1 tấn sản phẩm loại I dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản suất đồng thời 2 loại sản phẩm. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Hãy đặt kế hoạch sản xuất sao cho số tiền lãi cao nhất. + Trong số 45 học sinh của lớp 10A có 15 bạn được xếp loại học lực giỏi, 20 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa được học sinh giỏi vừa được hạnh kiểm tốt. Khi đó lớp 10A có bao nhiêu bạn chưa được xếp loại học lực giỏi và chưa có hạnh kiểm tốt. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình
Đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, học sinh có 180 phút đẻ làm bài, kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2019. Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường THPT Nam Tiền Hải – Thái Bình : + Trong mặt phẳng toạ độ Oxy. 1. Viết phương trình đường cao AD, phân giác trong CE của tam giác ABC biết A(4;-1), B(1;5), C(-4;-5). 2. Cho B(0;1), C(3;0). Đường phân giác trong góc BAC của tam giác ABC cắt Oy tại M(0;-7/3) và chia tam giác ABC thành hai phần có tỉ số diện tích bằng 10/11 (phần chứa điểm B có diện tích nhỏ hơn diện tích phần chứa điểm C). Gọi A(a;b) và a < 0, tính T = a^2 + b^2. + Chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC).
Đề thi học sinh giỏi Toán 10 năm 2018 - 2019 trường Đan Phượng - Hà Nội
giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội, kỳ thi được diễn ra nhằm giúp giáo viên bộ môn và nhà trường tuyển chọn những em học sinh khối lớp 10 giỏi môn Toán để bổ sung vào đội tuyển học sinh giỏi Toán 10 của nhà trường, những em được chọn sẽ được tuyên dương, khen thưởng trước toàn trường để làm tấm gương học tập cho các học sinh khác, các em sẽ được tiếp tục bồi dưỡng, rèn luyện để tham gia kỳ thi học sinh giỏi Toán cấp thành phố. Đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội được biên soạn theo hình thức tự luận nhằm đánh giá chính xác khả năng tư duy logic của các em, đề gồm 5 bài toán, thang điểm 20, thời gian làm bài thi môn Toán là 120 phút, đề thi có lời giải chi tiết và thang điểm. [ads] Trích dẫn đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình thang ABCD với hai đáy là AB và CD. Biết diện tích hình thang bằng 14 (đơn vị diện tích), đỉnh A(1;1) và trung điểm cạnh BC là H(-1/2;0). Viết phương trình tổng quát của đường thẳng AB biết đỉnh D có hoành độ dương và D nằm trên đường thẳng d: 5x – y + 1 = 0. + Cho parabol (P): y = 2x^2 + 6x – 1. Tìm giá trị của k để đường thẳng Δ: y = (k + 6)x + 1 cắt parabol (P) tại hai điểm phân biệt M, N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: y = -2x + 3/2. + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho BN = a/3, CM = 2a/3, AP = x (0 < x < a). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Đề thi HSG Toán 10 năm 2018 - 2019 trường Phùng Khắc Khoan - Hà Nội
Nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán để bổ sung vào đội ngũ học sinh giỏi Toán 10 của trường, vừa qua, trường THPT Phùng Khắc Khoan, Thạch Thất, Hà Nội đã tiến hành tổ chức kỳ thi chọn học sinh giỏi cấp trường lớp 10 môn Toán năm học 2018 – 2019. Đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội gồm 1 trang, đề được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài thi là 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + Cho hàm số y = x^2 + x – 1 có đồ thị (P). Tìm m để đường thẳng d: y = -2x – m cắt đồ thị (P) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Cho tam giác ABC có AB = c, AC = b và góc BAC bằng 60 độ. Các điểm M, N được xác định bởi MC = -2MB và NA = -1/2.NB. Tìm hệ thức liên hệ giữa b và c để AM và CN vuông góc với nhau. + Cho tam giác ABC có BC = a, CA = b, BA = c và diện tích là S. Biết S = b^2 – (a – c)^2. Tính tanB.