Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tìm điều kiện của x để bất phương trình mũ - lôgarit đúng với y thỏa mãn điều kiện

Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm điều kiện của x để bất phương trình mũ – lôgarit đúng với y thỏa mãn điều kiện cho trước; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng f a f b f a f b f a f b f a f b. Bước 2 : Xét hàm số y f x chứng minh hàm số luôn đồng biến, hoặc luôn nghịch biến Bước 3 : Do tính chất đồng biến hoặc nghịch biến của hàm số f a f b a b nếu hàm số đồng biến f a f b a b nếu hàm số nghịch biến. Cho các số nguyên dương x y không lớn hơn 4022. Biết mỗi giá trị của y luôn có ít nhất 2021 giá trị của x thỏa mãn bất phương trình 2 2 3 3 log 3 3 x y y x y xx y. Hỏi có bao nhiêu giá trị của y? Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y bất phương trình log 11 log 0 3 3 x x y x có nghiệm nguyên x và có không quá 10 số nguyên x thỏa mãn? Cho các số x y a thoả mãn 1 2048 1 x y a và 1 2 2 log 1 2 2 1 x a a x xy x y x a y a. Có bao nhiêu giá trị của a 100 để luôn có 2048 cặp số nguyên x y? Gọi S là tập tất cả các giá trị nguyên của y để bất phương trình 2 3 2 2 2 log 3 3 log 3 log y xy xy y. Có bao nhiêu giá trị nguyên của x để tập hợp S có đúng 9 phần tử?

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương trình mũ
Tài liệu gồm 26 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình mũ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. LÝ THUYẾT TRỌNG TÂM 1. Phương trình mũ cơ bản. 2. Các phương pháp giải phương trình mũ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Phương pháp 1. Đưa về cùng cơ số. Phương pháp 2. Lấy logarit hai vế phương trình (logarit hóa). Phương pháp 3. Đặt ẩn phụ. Phương pháp 4. Sử dụng tính đơn điệu của hàm số, phương pháp phân tích nhân tử, phương pháp đánh giá. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm hàm số lũy thừa, hàm số mũ và hàm số logarit
Tài liệu gồm 52 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. HÀM SỐ LŨY THỪA. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất của hàm số lũy thừa trên khoảng (0;+∞). 5. Đồ thị hàm số lũy thừa y = x^a trên khoảng (0;+∞). II. HÀM SỐ MŨ. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Đồ thị hàm số y = a^x. III. HÀM SỐ LOGARIT. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất. 5. Đồ thị hàm số y = loga x. CÁC DẠNG TOÁN: + Dạng 1. Tìm tập xác định của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 2. Tính đạo hàm của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 3. Tính đơn điệu và cực trị của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 4. Giá trị lớn nhất và nhỏ nhất hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 5. Đồ thị hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 6. Một số bài toán nâng cao về hàm số lũy thừa, hàm số mũ và hàm số logarit. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm công thức logarit
Tài liệu gồm 28 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Định nghĩa. 2. Các công thức Logarit. 3. Logarit thập phân, logarit tự nhiên. DẠNG 1. SỬ DỤNG CÔNG THỨC LOGARIT. DẠNG 2: BIỂU DIỄN BIỂU THỨC LOGARIT THEO BIỂU THỨC CHO TRƯỚC. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm công thức lũy thừa
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức lũy thừa, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. KHÁI NIỆM LŨY THỪA 1. Lũy thừa với số mũ nguyên. 2. Căn bậc n. 3. Lũy thừa với số mũ hữu tỷ. 4. Lũy thừa với số mũ vô tỷ. II. TÍNH CHẤT CỦA LŨY THỪA VỚI SỐ MŨ THỰC Tính chất 1. Tính chất 2: Tính đồng biến, nghịch biến. Tính chất 3: So sánh lũy thừa khác cơ số. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.